Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 53, Number 3-4, July–December 2019
Page(s) 115 - 123
DOI https://doi.org/10.1051/ita/2019002
Published online 26 April 2019
  1. M.-P. Béal, E. Czeizler, J. Kari and D. Perrin, Unambiguous automata. Math. Comput. Sci. 1 (2008) 625–638. [CrossRef] [Google Scholar]
  2. J. Berstel, D. Perrin and C. Reutenauer, Codes and automata. Cambridge Univ. Press, Cambridge (2010). [Google Scholar]
  3. J.M. Boë, A. de Luca and A. Restivo, Minimal complete sets of words. Theoret. Comput. Sci. 12 (1980) 325–332. [CrossRef] [Google Scholar]
  4. A. Carpi, On synchronizing unambiguous automata. Theoret. Comput. Sci. 60 (1988) 285–296. [CrossRef] [Google Scholar]
  5. A. Carpi and F. D’Alessandro, Strongly transitive automata and the Černý conjecture. Acta Inform. 46 (2009) 591–607. [Google Scholar]
  6. A. Carpi and F. D’Alessandro, Independent sets of words and the synchronization problem. Adv. Appl. Math. 50 (2013) 339–355. [Google Scholar]
  7. A. Carpi and F. D’Alessandro, On incomplete and synchronizing finite sets. Theoret. Comput. Sci. 664 (2017) 67–77. [CrossRef] [Google Scholar]
  8. J. Černý, Poznámka k homogénnym experimentom s konecnymi automatmi. Mat. fyz. čas. SAV 14 (1964) 208–215. [Google Scholar]
  9. Y. Césari, Sur l’application du théorème de Suschkevitch à l’étude des codes rationnells complets, in Automata, Languages and Programming. Vol. 370 of Lecture Notes in Computer Science. Springer, Berlin (1974) 342–350. [Google Scholar]
  10. G. Fici, E.V. Pribavkina and J. Sakarovitch, On the minimal uncompletable word problem. Preprint arXiv:1002.1928 (2010). [Google Scholar]
  11. P. Goralčik, Z. Hedrlin, V. Koubek and J. Ryšlinková, A game of composing binary relations. RAIRO: ITA 16 (1982) 365–369. [CrossRef] [Google Scholar]
  12. V.V. Gusev, M.I. Maslennikova and E.V. Pribavkina, Principal Ideal Languages and Synchronizing Automata. Fund. Inform. 132 (2014) 95–108. [Google Scholar]
  13. V.V. Gusev and E.V. Pribavkina, On Non-complete Sets and Restivo’s Conjecture, in Developments in Language Theory. Vol. 6795 of Lecture Notes in Computer Science. Springer, Berlin (2011) 239–250. [Google Scholar]
  14. J. Néraud, Completing circular codes in regular submonoids. Theoret. Comput. Sci. 391 (2008) 90–98. [CrossRef] [Google Scholar]
  15. J. Néraud and C. Selmi, On codes with a finite deciphering delay: constructing uncompletable words. Theoret. Comput. Sci. 255 (2001) 67–77. [Google Scholar]
  16. M.S. Paterson, Unsolvability in 3 × 3 matrices. Stud. Appl. Math. 49 (1970) 105–107. [Google Scholar]
  17. J.-E. Pin, On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17 (1983) 535–548. [Google Scholar]
  18. E.V. Pribavkina, Slowly synchronizing automata with zero and incomplete sets (Russian). Math. Zametki 90 (2011) 422–430; [translation in Math. Notes 90 (2011) 411–417]. [CrossRef] [Google Scholar]
  19. A. Restivo, Codes and complete sets, Théorie des codes, Actes de la VII École de Printemps d’informatique théorique, Jougne, edited by D. Perrin. LITP et le centre d’édition et de documentation de l’ ENSTA (1979). [Google Scholar]
  20. A. Restivo, Some remarks on complete subsets of a free monoid, in Non-Commutative Structures in Algebra and Geometric Combinatorics, International Colloquium, Arco Felice, July 1978, in Vol. 109 of Quaderni de “La Ricerca Scientifica”, CNR. Edited by A. de Luca (1981) 19–25. [Google Scholar]
  21. A. Restivo, S. Salemi, T. Sportelli, Completing codes. Theoret. Inform. Appl. 23 (1989) 135–147. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.