Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 53, Number 3-4, July–December 2019
Page(s) 85 - 113
DOI https://doi.org/10.1051/ita/2019003
Published online 24 October 2019
  1. N.R. Adiga, M.A. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S. Singh, B.D. Steinmacher-Burow, T. Takken, M. Tsao, P. Vranas, Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49 (2005) 265–276. [Google Scholar]
  2. Y.A. Ashir, I.A. Stewart, On embedding cycles in k-ary n-cubes. Paral. Process. Lett. 7 (1997) 49–55. [CrossRef] [Google Scholar]
  3. Y.A. Ashir, I.A. Stewart, Fault-tolerant embeddings of hamiltonian circuits in k-ary n-cubes. SIAM J. Discr. Math. 15 (2002) 317–328. [CrossRef] [Google Scholar]
  4. J.A. Bondy, U.S.R. Murty, Graph Theory. Springer, New York (2007). [Google Scholar]
  5. B. Bose, B. Broeg, Y. Kwon, Y. Ashir, Lee distance and topological properties of k-ary n-cubes. IEEE Trans. Comput. 44 (1995) 1021–1030. [Google Scholar]
  6. K. Day, A.-E. Al-Ayyoub, Fault diameter of k-ary n-cube networks. IEEE Trans. Paral. Distrib. Syst. 8 (1997) 903–907. [CrossRef] [Google Scholar]
  7. S.-Y. Hsieh, T.-H. Shen, Edge-bipancyclicity of a hypercube with faulty vertices and edges. Discr. Appl. Math. 156 (2008) 1802–1808. [CrossRef] [Google Scholar]
  8. R.E. Kessler, J.L. Schwarzmeier, Cray T3D: a new dimension for cray research. Proceedings of 38th IEEE Computer Society International Conference, IEEE Press (1993) 176–182. [Google Scholar]
  9. H.-C. Kim, J.-H. Park, Fault hamiltonicity of two-dimensional torus networks, Proceedings of Workshop on Algorithms and Computation WAAC’00, Tokyo, Japan (2000) 110–117. [Google Scholar]
  10. C.-N. Kuo, S.-Y. Hsieh, Pancyclicity and bipancyclicity of conditional faulty folded hypercubes. Inf. Sci. 180 (2010) 2904–2914. [Google Scholar]
  11. J. Li, S. Wang, D. Liu, Pancyclicity of ternary n-cube networks under the conditional fault model. Inf. Process. Lett. 111 (2011) 370–374. [Google Scholar]
  12. J. Li, S. Wang, D. Liu, S. Lin, Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges. Inf. Sci. 181 (2011) 2260–2267. [Google Scholar]
  13. C. Peterson, J. Sutton, P. Wiley, iWarp: A 100-MOPS LIW microprocessor for multicomputers. IEEE Micro 11 (1991) 26–37. [CrossRef] [Google Scholar]
  14. I.A. Stewart, Y. Xiang, Embedding long paths in k-ary n-cubes with faulty nodes and links. IEEE Trans. Paral. Distrib. Syst. 19 (2008) 1071–1085. [CrossRef] [Google Scholar]
  15. C.-H. Tsai, Y.-C. Lai, Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes. Inf. Sci. 177 (2007) 5590–5597. [Google Scholar]
  16. S. Wang, S. Lin, Path embeddings in faulty 3-ary n-cubes. Inf. Sci. 180 (2010) 191–197. [Google Scholar]
  17. S. Wang, S. Zhang, Embedding hamiltonian paths in k-ary n-cubes with conditional edge faults. Theor. Comput. Sci. 412 (2011) 6570–6584. [Google Scholar]
  18. Y. Xiang, I.A. Stewart, Bipancyclicity in k-ary n-cubes with faulty edges under a conditional fault assumption. IEEE Trans. Parallel Distrib. Syst. 22 (2011) 1506–1513. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.