Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 51, Number 4, October–December 2017
Special issue dedicated to the 16th "Journées Montoises d’Informatique Théorique"
Page(s) 205 - 216
DOI https://doi.org/10.1051/ita/2017015
Published online 13 February 2018
  1. D.R. Bean, A. Ehrenfeucht and G.F. McNulty, Avoidable patterns in strings of symbols. Pac. J. Math. 85 (1979) 261–294. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Berstel, Mots sans carré et morphismes itérés. Discret. Appl. Math. 29 (1980) 235–244. [CrossRef] [Google Scholar]
  3. J. Berstel, Axel Thue’s papers on repetition in words: a translation. Technical Report 20. Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec, Montréal (1995). [Google Scholar]
  4. F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms. Theor. Comput. Sci. 23 (1983) 69–82. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Crochemore, Sharp characterizations of squarefree morphisms. Theor. Comput. Sci. 18 (1982) 221–226. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Crochemore, Régularités évitables (thèse d’état), Technical Report 83-43. LITP (1983). [Google Scholar]
  7. J.D. Currie and N. Rampersad, There are k-uniform cubefree binary morphisms for all k ≥ 0. Discret. Appl. Math. 157 (2009) 2548–2551. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Karhumäki, On cube-free ω-words generated by binary morphisms. Discret. Appl. Math. 5 (1983) 279–297. [CrossRef] [MathSciNet] [Google Scholar]
  9. V. Keränen, On k-repetition freeness of length uniform morphisms over a binary alphabet. Discret. Appl. Math. 9 (1984) 301–305. [CrossRef] [MathSciNet] [Google Scholar]
  10. V. Keränen, On the k-freeness of morphisms on free monoids, in Annales Academiae Scientarium Fennicae 61, Series A. (1986). [Google Scholar]
  11. M. Leconte, A characterization of power-free morphisms. Theor. Comput. Sci. 38 (1985) 117–122. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Leconte, Codes sans répétition. Ph.D. Thesis, LITP Université Paris 6 (1985). [Google Scholar]
  13. M. Lothaire, Combinatorics on Words. Vol. 17 of Encyclopedia of Mathematics. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library, Cambridge, UK, 1997. [Google Scholar]
  14. M. Lothaire, Algebraic Combinatorics on Words. Vol. 90 of Encyclopedia of Mathematics. Cambridge University Press, Cambridge, UK (2002). [Google Scholar]
  15. M. Lothaire, Applied Combinatorics on Words. Vol. 105 of Encyclopedia of Mathematics. Cambridge University Press, Cambridge, UK (2005). [Google Scholar]
  16. G. Richomme and P. Séébold, Conjectures and results on morphisms generating k-power-free words. Int. J. Found. Comput. Sci. 15 (2004) 307–316. [CrossRef] [Google Scholar]
  17. G. Richomme and F. Wlazinski, About cube-free morphisms, in STACS’2000. Vol. 1770 of Lecture Notes in Computer Science, edited by H. Reichel and S. Tison. Springer-Verlag (2000) 99–109. [CrossRef] [Google Scholar]
  18. G. Richomme and F. Wlazinski, Some results on k-power-free morphisms. Theor. Comput. Sci. 273 (2002) 119–142. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Thue, Uber unendliche zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv 7 (1906) 1–22. [Google Scholar]
  20. A. Thue, Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Kristiania Videnskapsselskapets Skrifter Klasse I. Mat.-naturv 1 (1912) 1–67. [Google Scholar]
  21. F. Wlazinski, A test-set for k-power-free binary morphisms. TIA 35 (2001) 437–452. [Google Scholar]
  22. F. Wlazinski, Reduction in non-(k + 1)-power-free morphisms. Special issue dedicated to the 15th “Journées montoises d’informatique théorique”. RAIRO: ITA 50 (2016) 3–20. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.