Free Access
RAIRO-Theor. Inf. Appl.
Volume 51, Number 4, October–December 2017
Special issue dedicated to the 16th "Journées Montoises d’Informatique Théorique"
Page(s) 169 - 180
Published online 31 January 2018
  1. J.-P. Allouche, J. Shallit, Automatic Sequences: Theory and Applications. Cambridge University Press, Cambridge (2003). [CrossRef] [Google Scholar]
  2. J. Berstel, Tracé de droites, fractions continues et morphismes réels, in M. Lothaire, “Mots”, Mélanges offerts á M.P. Schutzenberger, Hermès (1990). [Google Scholar]
  3. J. Berstel and P. Seébold, Sturmian words, in Algebraic Combinatorics on Words, edited by M. Lothaire. Cambridge University Press (2002). [Google Scholar]
  4. J.-P. Borel and C. Reutenauer, Palindromic factors of billiard words. Theor. Comput. Sci. 340–342 (2005) 334–348. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-P. Borel, How to build Billiard Words using Decimations. RAIRO: ITA 44 (2010) 59–77. [Google Scholar]
  6. J.E. Bresenham, Algorithm for computer control of a digital plotter. IBM Syst. J. 4 (1965) 25–30. [CrossRef] [Google Scholar]
  7. D. Crisp, W. Moran, A. Pollington and P. Shive, Substitution invariant cutting sequences. J. Théorie des Nombres Bordeaux 5 (1993) 123–137. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics. Addison-Wesley, Cambridge (1982). [Google Scholar]
  9. H. Freeman, On the encoding of arbitrary geometric configuration. IRE Trans. Electron. Comput. 10 (1961) 260–268. [CrossRef] [Google Scholar]
  10. G. Hegron, Synthèse d’images : algorithmes élémentaires. Dunod, Paris (1985). [Google Scholar]
  11. J. Justin and G. Pirillo, Decimations and Sturmian words. Theor. Inform. Appl. 31 (1997) 271–290. [CrossRef] [Google Scholar]
  12. J. Koplowitz, On the performance of chain codes for quantization of line drawings. IEEE Trans Pattern Anal. Machine Intell. PAMI-3 (1981) 357–393. [CrossRef] [Google Scholar]
  13. W.M. Newman and R.F. Sproull, Principles of Interactive Computer Graphics. McGraw-Hill (1985). [Google Scholar]
  14. M.L.V. Pitteway and R.A. Earnshax, in Euclid’s Algorithm and Line Drawing, Fundamental Algorithms in Computer Graphics. Springer Verlag (1985) 101–105. [Google Scholar]
  15. J.-P. Reveilles, Géométrie discréte, calcul en nombres entiers et algorithmique. Thesis, Univ. Louis Pasteur – Strasbourg, France (1991). [Google Scholar]
  16. A. Rosenfeld, Digital straight line segments. IEEE Trans. Comput. 32 (1974) 1264–1269. [CrossRef] [Google Scholar]
  17. C. Series, The geometry of Markoff numbers. Math. Intell. 7 (1985) 20–29. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.