Issue
RAIRO-Theor. Inf. Appl.
Volume 47, Number 1, January-March 2013
6th Workshop on Fixed Points in Computer Science (FICS'09)
Page(s) 111 - 132
DOI https://doi.org/10.1051/ita/2012031
Published online 10 January 2013
  1. P. Arrighi and G. Dowek, Linear-algebraic lambda-calculus : higher-order, encodings, and confluence, in Proc. 19th Int. Conf. on Rewriting Techniques and Applications, RTA 2008, Hagenberg, July 2008, edited by A. Voronkov. Springer. Lect. Notes Comput. Sci. 5117 (2008) 17–31. [Google Scholar]
  2. R.C. Backhouse, P.J. de Bruin, P.F. Hoogendijk, G. Malcolm, E. Voermans and J. van der Woude, Polynomial relators (extended abstract), in Proc. 2nd Int. Conf. on Algebraic Methodology and Software Technology, AMAST ’91 (Iowa City, IO, May 1991), edited by M. Nivat, C. Rattray, T. Rus and G. Scollo. Springer. Workshops in Computing (1992) 303–326. [Google Scholar]
  3. R.C. Backhouse and P.F. Hoogendijk, Generic properties of datatypes, in Generic Programming : Advanced Lectures, edited by R.C. Backhouse and J. Gibbons. Springer. Lect. Notes Comput. Sci. 2793 (2003) 97–132. [Google Scholar]
  4. C. Berline, Graph models of lambda-calculus at work, and variations. Math. Struct. Comput. Sci. 16 (2006) 185–221. [CrossRef] [Google Scholar]
  5. G. Berry, Stable models of typed lambda-calculi, in Proc. of 5th Int. Coll. on Automata, Languages and Programming, ICALP ’78, Udine, July 1978, edited by G. Ausiello and C. Böhm. Springer. Lect. Notes Comput. Sci. 62 (1978) 72–89. [Google Scholar]
  6. A. Bucciarelli, T. Ehrhard and G. Manzonetto, Not enough points is enough, in Proc. 21st Workshop on Computer Science Logic, CSL 2007, Lausanne, Sept. 2007, edited by J. Duparc, T. A. Henzinger. Springer. Lect. Notes Comput. Sci. 4646 (2007) 298–312. [Google Scholar]
  7. A. Bucciarelli, T. Ehrhard and G. Manzonetto, A relational model of a parallel and non-deterministic lambda-calculus, in Proc. Int. Symp. on Logical Foundations of Computer Science, LFCS 2009, Deerfield Beach, FL, Jan. 2009, edited by S.N. Artëmov and A. Nerode. Springer. Lect. Notes Comput. Sci. 5407 (2009) 107–121. [Google Scholar]
  8. V. Danos and T. Ehrhard, On probabilistic coherence spaces, unpublished draft (2008). Available on http://hal.archives-ouvertes.fr/hal-00280462. [Google Scholar]
  9. D. de Carvalho, Sémantiques de la logique linéaire et temps de calcul, Ph.D. thesis, Université Aix-Marseille 2 (2007). [Google Scholar]
  10. D. de Carvalho, Execution time of lambda-terms via denotational semantics and intersection types. Technical report 6638. INRIA (2008). [Google Scholar]
  11. T. Ehrhard, Finiteness spaces. Math. Struct. Comput. Sci. 15 (2005) 615–646. [CrossRef] [Google Scholar]
  12. T. Ehrhard and O. Laurent, Interpreting a finitary pi-calculus in differential interaction nets. Inform. Comput. 208 (2010) 606–633. [CrossRef] [Google Scholar]
  13. T. Ehrhard and L. Regnier, The differential lambda-calculus. Theor. Comput. Sci. 309 (2003) 1–41. [CrossRef] [Google Scholar]
  14. T. Ehrhard and L. Regnier, Differential interaction nets. Electron. Notes Theoret. Comput. Sci. 123 (2005) 35–74. [CrossRef] [Google Scholar]
  15. T. Ehrhard and L. Regnier, Böhm trees, Krivine’s machine and the Taylor expansion of λ-terms, in Proc. 2nd Conf. on Computability in Europe, CiE 2006, Swansea, June/July 2006, edited by A. Beckmann, U. Berger, B. Löwe and J.V. Tucker. Springer. Lect. Notes Comput. Sci. 3988 (2006) 186–197. [Google Scholar]
  16. J.-Y. Girard, The system F of variable types, fifteen years later. Theoret. Comput. Sci. 45 (1986) 159–192. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-Y. Girard, Linear logic. Theoret. Comput. Sci. 50 (1987) 1–102. [CrossRef] [Google Scholar]
  18. J.-Y. Girard, Normal functors, power series and lambda-calculus. Ann. Pure Appl. Log. 37 (1988) 129–177. [CrossRef] [Google Scholar]
  19. J.-Y. Girard, P. Taylor and Y. Lafont, Proofs and Types, Cambridge University Press, Cambridge Tracts. Theoret. Comput. Sci. 7 (1989). [Google Scholar]
  20. P. Hoogendijk and O. De Moor, Container types categorically. J. Funct. Program. 10 (2000) 191–225. [CrossRef] [Google Scholar]
  21. M. Hyland and A. Schalk, Glueing and orthogonality for models of linear logic. Theoret. Comput. Sci. 294 (2003) 183–231. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Lambek and P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge University Press. Cambridge Stud. Adv. Math. 7 (1988). [Google Scholar]
  23. P.-A. Melliès, Categorical semantics of linear logic. Société Mathématique de France. Interact. Models Comput. Program Behaviour Panor. 27 (2009) 1–196. [Google Scholar]
  24. M. Pagani and C. Tasson, The inverse Taylor expansion problem in linear logic, in Proc. 24th Ann. IEEE Symp. on Logic in Computer Science, LICS ’09, Los Angeles, CA, Aug. 2009. IEEE CS Press (2009) 222–231. [Google Scholar]
  25. M. Parigot, On the representation of data in lambda-calculus, in Proc. of 3rd Workshop on Computer Science Logic, CSL ’89, Kaiserslautern, Oct. 1989, edited by E. Börger, H. Kleine Büning and M.M. Richter. Springer. Lect. Notes Comput. Sci. 440 (1989) 309–321. [Google Scholar]
  26. D.S. Scott, Data types as lattices. SIAM J. Comput. 5 (1976) 522–587. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Statman, Completeness, invariance and lambda-definability. J. Symb. Log. 47 (1982) 17–26. [CrossRef] [Google Scholar]
  28. C. Tasson, Algebraic totality, towards completeness, in Proc. 9th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2009, Brasilia, July 2009, edited by P.-L. Curien. Springer. Lect. Notes Comput. Sci. 5608 (2009) 325–340. [Google Scholar]
  29. C. Tasson and L. Vaux, Transport of finiteness structures and applications. Math. Struct. Comput. Sci. (to appear). [Google Scholar]
  30. M.-F. Thibault, Pre-recursive categories. J. Pure Appl. Algebra 24 (1982) 79–93. [CrossRef] [MathSciNet] [Google Scholar]
  31. P. Tranquilli, Intuitionistic differential nets and lambda-calculus. Theoret. Comput. Sci. 412 (2011) 1979–1997. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Vaux, The algebraic lambda calculus. Math. Struct. Comput. Sci. 19 (2009) 1029–1059. [CrossRef] [Google Scholar]
  33. L. Vaux, Differential linear logic and polarization, in Proc. 9th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2009. Brasilia, July 2009, edited by P.-L. Curien. Springer. Lect. Notes Comput. Sci. 5608 (2009) 371–385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.