Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 33, Number 1, January Fabruary 1999
Page(s) 79 - 101
DOI https://doi.org/10.1051/ita:1999107
Published online 15 August 2002
  1. J.-P. Allouche, E. Cateland, W.J. Gilbert, H.-O. Peitgen, J.O. Shallit and G. Skordev, Automatic maps in exotic numeration systems. Theory Comput. Syst. 30 (1997) 285-331. [MathSciNet] [Google Scholar]
  2. T. Aoki, H. Amada and T. Higuchi, Real/complex reconfigurable arithmetic using redundant complex number systems, in Proc. 13th Symposium on Computer Arithmetic (1997) 200-207. [Google Scholar]
  3. A. Avizienis, Signed-digit number representations for fast parallel arithmetic. IEE Trans. Electron. Comput. 10 (1961) 389-400. [CrossRef] [Google Scholar]
  4. M.P. Béal, Codage symbolique, Masson (1993). [Google Scholar]
  5. J. Berstel, Transductions and Context-free Languages, Teubner (1979). [Google Scholar]
  6. J. Berstel, Fonctions rationnelles et addition. Actes de l'École de Printemps de Théorie des Langages, LITP (1982) 177-183. [Google Scholar]
  7. J. Berstel, Fibonacci words -- A survey, The book of L, Springer-Verlag (1986) 13-27. [Google Scholar]
  8. C.Y. Chow and J.E. Robertson, Logical design of a redundant binary adder, in Proc. 4th Symposium on Computer Arithmetic (1978) 109-115. [Google Scholar]
  9. C. Choffrut, Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theoret. Comput. Sci. 5 (1977) 325-337. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Duprat, Y. Herreros and S. Kla, New redundant representations of complex numbers and vectors. IEE Trans. Comput. C-42 (1993) 817-824. [Google Scholar]
  11. S. Eilenberg, Automata, languages and machines, Vol. A (Academic Press, 1974). [Google Scholar]
  12. M.D. Ercegovac, On-line arithmetic: An overview. Real time Signal Processing VII SPIE 495 (1984) 86-93. [Google Scholar]
  13. Ch. Frougny, Confluent linear numeration systems. Theoret. Comput. Sci. 106 (1992) 183-219. [CrossRef] [MathSciNet] [Google Scholar]
  14. Ch. Frougny, Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60. [CrossRef] [MathSciNet] [Google Scholar]
  15. Ch. Frougny, Parallel and on-line addition in negative base and some complex number systems, in Proc. of the Conference Euro-Par 96, Springer, Lyon, L.N.C.S. 1124 (1996) 175-182. [Google Scholar]
  16. Ch. Frougny and J. Sakarovitch, Synchronisation déterministe des automates à délai borné. Theoret. Comput. Sci. 191 (1998) 61-77. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Gilbert, Radix representations of quadratic fields. J. Math. Anal. Appl. 83 (1981) 264-274. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y. Herreros, Contribution à l'arithmétique des ordinateurs, Ph.D. Dissertation, I.N.P.G., Grenoble, France (1991). [Google Scholar]
  19. I. Kátai and J. Szabó, Canonical number systems. Acta Sci. Math. 37 (1975) 255-280. [Google Scholar]
  20. D.E. Knuth, An imaginary number system. CACM 3 (1960) 245-247. [Google Scholar]
  21. D.E. Knuth, The art of computer programming, Seminumerical Algorithms, Vol. 2, 2nd ed. (Addison-Wesley, 1988). [Google Scholar]
  22. S. Körmendi, Classical number systems in Formula .Acta Sci. Math. 50 (1986) 351-357. [Google Scholar]
  23. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press (1995). [Google Scholar]
  24. D.W. Matula, Basic digit sets for radix representation. JACM 29 (1982) 1131-1143. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.-M. Muller, Some characterizations of functions computable in on-line arithmetic. IEE Trans. Comput. 43 (1994) 752-755. [CrossRef] [MathSciNet] [Google Scholar]
  26. A.M. Nielsen and J.-M. Muller, Borrow-save adders for real and complex number systems, in Proc. of the Conference Real Numbers and Computers, Marseille (1996) 121-137. [Google Scholar]
  27. K. Pekmestzi, Complex numbers multipliers. IEE Proc. Computers and Digital Techniques 136 (1989) 70-75. [CrossRef] [Google Scholar]
  28. W. Penney, A ``binary" system for complex numbers. JACM 12 (1965) 247-248. [CrossRef] [Google Scholar]
  29. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. [Google Scholar]
  30. A. Robert, A good basis for computing with complex numbers. El. Math. 49 (1994) 111-117. [Google Scholar]
  31. T. Safer, Radix representations of algebraic number fields and finite automata, in Proc. Stacs'98, LNCS 1373 (1998) 356-365. [Google Scholar]
  32. K.S. Trivedi and M.D. Ercegovac, On-line algorithms for division and multiplication. IEE Trans. Comput. C 26 (1977) 681-687. [Google Scholar]
  33. O. Vaysse, Addition molle et fonctions p-locales. Semigroup Forum 34 (1986) 157-175. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.