Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 33, Number 1, January Fabruary 1999
Page(s) 59 - 77
DOI https://doi.org/10.1051/ita:1999106
Published online 15 August 2002
  1. I. Abdeljaouad, Calculs d'invariants primitifs minimaux et implantation en Axiom, Mémoire de stage, DEA Algorithmique (1996). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois [Google Scholar]
  2. I. Abdeljaouad, Package PrimitiveInvariant sous GAP, (1997). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois [Google Scholar]
  3. J.M. Arnaudiès and A. Valibouze, Lagrange resolvents. J. Pure Appl. Algebra (1997). [Google Scholar]
  4. E.H. Berwick, The condition that a quintic equation should be soluble by radicals. Proc. London Math. Soc. 14 (1915) 301-307. [Google Scholar]
  5. E.H. Berwick, On soluble sextic equations. Proc. London Math. Soc. 29 (1929) 1-28. [CrossRef] [Google Scholar]
  6. A. Cayley, On a new auxiliary equation in the theory of equation of fifth order. Philos. Trans. Roy. Soc. London, CLL (1861). [Google Scholar]
  7. A. Colin, Formal computation of Galois groups with relative resolvents, AAECC'95, Springer Verlag, Lecture Notes in Computer Science 948 (1995) 169-182. [Google Scholar]
  8. A. Colin, Solving a system of algebraic equations with symmetries. J. Pure and Appl. Algebra (1996). [Google Scholar]
  9. H.O. Foulkes, The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (1931) 9-19. [Google Scholar]
  10. G.A.P. Groups, algorithms and programming, Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochoschule, Aachem, gap@samson.math.rwth-aachen.de (1993). [Google Scholar]
  11. K. Girstmair, On invariant polynomials and their application in field theory. Maths of Comp. 48 (1987) 781-797. [CrossRef] [Google Scholar]
  12. C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villard, Paris (1870). [Google Scholar]
  13. G. Kemper, Calculating invariant rings of finite groups over arbitrary fields. J. Symbolic Computation (1995). [Google Scholar]
  14. F. Lehobey, Resolvent computation by resultants without extraneous powers. J. Pure Appl. Algebra (1999) à paraître. [Google Scholar]
  15. E. Luther, Ueber die factoren des algebraisch lôsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal für Math. 37 (1848) 193-220. [Google Scholar]
  16. N. Rennert and A. Valibouze, Modules de Cauchy, Rapport interne LIP6 (1997). [Google Scholar]
  17. L. Soicher, The computation of the Galois groups, Thesis in departement of computer science, Concordia University, Montreal, Quebec, Canada (1981). [Google Scholar]
  18. R.P. Stauduhar, The computation of Galois groups. Math. Comp. 27 (1973) 981-996. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Sturmfels, Algorithms in invariant theory, Wien, New-York: Springer Verlag (1993). [Google Scholar]
  20. A. Valibouze, Groupes de Galois jusqu'en degré 7. Rapport interne LIP6 (1997). [Google Scholar]
  21. A. Vandermonde, Mémoire de l'Académie des Sciences de Paris (1771). [Google Scholar]
  22. R.L. Wilson, A method for the determination of the Galois group, Amer. Math. Soc. (1949). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.