RAIRO-Inf. Theor. Appl. **38** (2004) 269-271 DOI: 10.1051/ita:2004014

CORRIGENDUM: COMPLEXITY OF INFINITE WORDS ASSOCIATED WITH BETA-EXPANSIONS

Christiane Frougny^{1, 2}, Zuzana Masáková³ and Edita Pelantová³

Abstract. We add a sufficient condition for validity of Proposition 4.10 in the paper Frougny *et al.* (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny *et al.* (2004) use it.

Mathematics Subject Classification. 11A63, 11A67, 37B10, 68R15

RAIRO-Inf. Theor. Appl. 38 (2004) 163-185.

1. INTRODUCTION

The aim of this note is to correct the mistake contained in our paper [2]. We shall use the notation of the paper and refer to the statements included in it.

We were pointed out [1] a counterexample to assertion (1) of Theorem 6.2 in the paper. The assertion says that the complexity of the fixed point u_{β} of the canonical substitution φ_{β} associated with a simple Parry number β with the Rényi expansion $d_{\beta}(1) = t_1 t_2 \cdots t_{m-1} 1$ is affine, namely $\mathcal{C}(n) = (m-1)n+1$. This statement is however true only under the condition used for assertion (2) of the theorem, namely that the Rényi expansion $d_{\beta}(1) = t_1 t_2 \cdots t_m$ satisfies

$$t_1 = t_2 = \dots = t_{m-1}$$
 or $t_1 > \max\{t_2, \dots, t_{m-1}\}$. (*)

The mistake occurred due to a slip in the proof of Proposition 4.10. We show in this note that under the additional condition (*) the proposition is valid.

¹ LIAFA, CNRS UMR 7089, 2 place Jussieu, 75251 Paris Cedex 05, France;

e-mail: christiane.frougny@liafa.jussieu.fr

 $^{^2}$ Université Paris 8.

³ Department of Mathematics, FNSPE, Czech Technical University, Trojanova 13, 120 00 Praha 2, Czech Republic;

e-mail: masakova@km1.fjfi.cvut.cz & pelantova@km1.fjfi.cvut.cz © EDP Sciences 2004

C. FROUGNY, Z. MASÁKOVÁ AND E. PELANTOVÁ

The corrected version of Proposition 4.10 of [2] is stated here as Proposition 2.2. At the end of this note we explain which statements of the paper [2] need to be equipped with condition (*), as well.

Let us mention that the condition (*) in Proposition 2.2 may be weakened. Nevertheless, we have chosen the condition in the form (*), since anyway most of the statements in the paper [2] use it.

2. Proof of Proposition 4.10 of [2]

In order to prove Proposition 2.2 we need the following lemma.

Lemma 2.1. Let $t_1 > \max\{t_2, \ldots, t_{m-1}\}$. Let w be a right special factor of u_β with at least 3 distinct right extensions X, Y, Z, such that w contains a non-zero letter, wX is a left special factor and $X \neq 0$. Then there exists a word \tilde{w} which is a right special factor of u_β with at least 3 distinct right extensions $\tilde{X}, \tilde{Y}, \tilde{Z}$ such that $\tilde{w}\tilde{X}$ is a left special factor, $\tilde{X} \neq 0$, and $wX = \varphi(\tilde{w}\tilde{X})$.

Proof. The word w can be written as $w = w'U0^p$, where $U \neq 0$ and $p \geq 0$. Thus $U0^p X$, $U0^p Y$, $U0^p Z$ are factors of u_β . Since at least one of X, Y, Z is ≥ 2 , we can derive from Lemma 4.5 of [2] and condition $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ that $p < t_1$. Since w'U is a left special factor, according to (ii) of Lemma 3.7 there exists a left special factor \tilde{w} such that $w'U = \varphi(\tilde{w})$. Now

$$wX = \varphi(\tilde{w})0^{p}X$$

$$wY = \varphi(\tilde{w})0^{p}Y$$

$$wZ = \varphi(\tilde{w})0^{p}Z$$

are distinct factors of u_{β} . Hence there must exist distinct letters \tilde{X} , \tilde{Y} , \tilde{Z} such that $\tilde{w}\tilde{X}$, $\tilde{w}\tilde{Y}$, $\tilde{w}\tilde{Z}$ are also factors of u_{β} . Moreover, since $X \neq 0$ and $p < t_1$, we have $\varphi(\tilde{X}) = 0^p X$, where $\tilde{X} \neq 0$. As $\varphi(\tilde{w}\tilde{X}) = wX$ is a left special factor, (ii) of Lemma 3.7 implies that $\tilde{w}\tilde{X}$ is a left special factor, which completes the proof. \Box

The following statement is the same as in Proposition 4.10 of [2], except the additional condition (*).

Proposition 2.2. Let $d_{\beta}(1)$ satisfies the condition (*). Then for every maximal left special factor $v = v_0v_1 \cdots v_k$ containing a letter $v_j \neq 0$ there exists a maximal left special factor w and an $s \in \{t_1, t_2, \ldots, t_{m-1}\}$ such that $v = \varphi(w)0^s$.

Proof. Let $j = \max\{i \mid v_i \neq 0\}$. According to Lemma 3.7 there exists a left special factor $w = w_0 w_1 \cdots w_\ell$ such that $v_0 v_1 \cdots v_j = \varphi(w_0) \varphi(w_1) \cdots \varphi(w_\ell)$ and thus

$$v = v_0 v_1 \cdots v_j 0^s = \varphi(w_0) \varphi(w_1) \cdots \varphi(w_\ell) 0^s$$
, where $s = k - j$.

Since v is maximal, we can use Observation 4.2 and Corollary 4.6 to derive that $s \in \{t_1, t_2, \ldots, t_{m-1}\}.$

270

CORRIGENDUM: COMPLEXITY OF BETA-EXPANSIONS

It remains to show that w is a maximal left special factor of u_{β} . Assume that w is not maximal. We distinguish two cases according to which part of condition (*) is satisfied.

• Let $t_1 = t_2 = \cdots = t_{m-1} =: t$. Since w is not maximal, then according to Lemma 4.9 there exists a left special factor wX, where $X \neq m-1$ or a left special factor w(m-1)0. However, then (ii) of Lemma 3.7 implies that $\varphi(wX) = \varphi(w)0^t(X+1)$, resp. $\varphi(w(m-1)0) = \varphi(w)0^{t_m+t}1$, is also a left special factor. Since s = t, the factor v is a proper prefix of both of them, which is a contradiction with the maximality of v.

271

• Let $t_1 > \max\{t_2, \ldots, t_{m-1}\}$. Since $v = \varphi(w)0^s$ is a maximal left special factor of u_β and w is not maximal, there exists a letter X such that wX is again a left special factor. Lemma 3.7 implies that $\varphi(wX)$ is also a left special factor. Since $v = \varphi(w)0^s$ may not be a proper prefix of $\varphi(wX)$, the condition $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ implies $X \neq 0$.

The maximality of the left special factor $v = \varphi(w)0^s$ implies also existence of distinct letters Y^*, Z^* such that $\varphi(w)0^sY^*, \varphi(w)0^sZ^*$ are factors of u_β and but they are not left special. There must exist distinct letters Y, Z such that wY, wZ are factors of u_β but not left special.

We have thus shown that w is a right special factor with at least 3 distinct right extensions $X \neq 0$, Y, Z, where wX is a left special factor. Repeated use of Lemma 2.1 leads to a right special factor $w^{(0)} = 0^q$, for $q \geq 1$, which has at least 3 distinct right extensions $X^{(0)} \neq 0$, $Y^{(0)}$, $Z^{(0)}$, such that $w^{(0)}X^{(0)}$ is a left special factor of u_{β} . Lemma 4.5 implies that $X^{(0)} = 1$ and $q = t_1$. At least one letter among $Y^{(0)}, Z^{(0)}$ is non-zero, say $Y^{(0)}$. Then $Y^{(0)} \geq 2$, but then $w^{(0)}Y^{(0)} = 0^{t_1}Y^{(0)}$ is due to Lemma 4.5 not a factor of u_{β} , which is a contradiction.

3. Conclusions

Proposition 4.10 was used in [2] for proving Corollary 4.11, second implication of Theorem 4.12, assertion (1) of Theorem 6.2 and Corollary 6.3. Therefore condition (*) should be added in the mentioned statements as well.

Acknowledgements. We are grateful to V. Berthé and J. Bernat for pointing out a counterexample to assertion (1) of Theorem 6.2 in our paper.

References

- [1] J. Bernat and V. Berthé, Oral communication.
- [2] Ch. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Inf. Theor. Appl. 38 (2004) 163–185.