
INFORMATIQUE THÉORIQUE ET APPLICATIONS

DOMINIQUE GENIET

RENÉ SCHOTT

LOŸS THIMONIER
A Markovian concurrency measure
Informatique théorique et applications, tome 30, no 4 (1996), p. 295-
304.
<http://www.numdam.org/item?id=ITA_1996__30_4_295_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1996__30_4_295_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 30, n° 4, 1996, pp. 295-304)

A MARKOVIAN CONCURRENCY MEASURE (*) (**)

by Dominique GENIET (*), René SCHOTT (2) and Loys THIMONBER (3)

Communicated by A. ARNOLD

Abstract. — We show how to modelize concurrency between sève rai processors in terms of
automata and Markov chains; then, we define a concurrency measure which reflects more faithfully
the behaviour of the processes and is in addition easy to compute with a symbolic manipulator
like Maple (this is an improvement over a previous measure [3] whose computation appears to
be expensive.

Résumé. - Nous montrons comment modéliser la concurrence entre plusieurs processeurs en
termes d'automates et de chaînes de Markov; ensuite nous définissons une mesure de concurrence
qui reflète plus fidèlement le comportement des processus et qui de plus est facile à calculer avec
un logiciel de calcul symbolique comme Maple (ce qui constitue une amélioration par rapport à
une mesure antérieure dont le calcul était coûteux).

1. INTRODUCTION

The notion of concurrency plays a central rôle in parallel processing,
and has been studied rather extensively over the last decade mostly from
algebraic and/or semantic point of view. This explains why the published
literature on concurrency measures is scanty. J. Françon [10] has shown how
to count explicitely the number of correct {Le, without deadlock) behaviours
of parallel Systems under the mutual exclusion policy. His measure is in
fact the inverse of the radius of convergence of some generating function
and no implementation based on this approach has been realized until now.

(*) A preliminary version of this paper appeared in the Proceedings of CA AP'90, LNCS 437,
pp 177-190, Springer-Verlag.

(**) Received January 1992.
C1) LISI-ENSMA, Téléport 2, Site du Futuroscope, 86960 Futuroscope Cedex, France,

dgeniet@ diane .univ-poitiers .fr
(2) CRIN, Université Nancy-I, 54506 Vandœuvre-lès-Nancy Cedex, France, schott@loria.fr
(3) LIFIA, UFR Maths Informatique, Université de Picardie, 33, rue Saint-Leu, 80039 Amiens

Cedex, France.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/96/04/$ 7.00/© AFCET-Gauthier-Villars

296 D. GENIET et al

J. Beauquier, B. Bérard and L. Thimonier [3] consider also all behaviours of
the concurrent Systems and their measure, based on Arnold-Nivat's model,
is the average waiting time of the processes. It has been shown [12] that the
computation of this measure is often time and space consuming. B. Charron-
Bost [5] introduces a coëfficiënt which reflects the interaction between the

• different processors during the exécution of a parallel computation. It is an
interesting investigation of the problem we consider here.

Our approach uses also Arnold-Nivat's model [2], and we show that
the behaviour of concurrent Systems is modeled by absorbing Markov
chains whose transition matrices contain all information necessary for easy
computation of the concurrency measure. Classical properties of Markov
chains lead to simple linear algebra problems, easy to solve with a symbolic
manipulator like Maple.

The organization is as follows. Section 2 provides the set of necessary
définitions and properties of automata and languages. Section 3 is devoted
to Arnold-Nivat's model and its probabilistic extension. Details about the
computation of our Markovian concurrency measure are given in Sections 4
and 5. Section 6 contains an exemple, and Section 7 concludes the paper.

2. BASIC NOTIONS

We assume that the reader is familiar with the basic aspects of language
theory ([4], [6]). As usual, E* is the free monoid over the alphabet S. Let
w be a word of LcS* . We dénote by \w\ the length of w, \w\x the number
of occurrences of x in w (x may be a letter or a subword...), and by w^
the i-th letter of w.

Let (Li)ï€[i.n] be a family of regular languages defined over the

alphabets (£i)*G[i,n]- L e t r* : H3j=i^j ~^ s« b e t n e ^ m projection. We

extend r% to an homomorphism r% : (i l j ^ r ^ ' i) "-* (^)** ^j=iA? =

<w E (riyZi1 ^j) 1 ^ £ [1> nL ri(w) £ Li \ is called homogeneous prod-
uct It follows immediately that Vz, |n(iu)| = \w\.

Note that the homogeneous product of regular languages is always regular.

Let (Si)t€[i.n] be a family of alphabets and S be the product of these
alphabets (a letter of S is a vector whose z-th component is a letter of Si).
We call projector on the i-th component the morphism that associâtes with
an element w of E its i-th component wi.

Informatique théorique et Applications/Theoretical Informaties and Applications

A MARKOVIAN CONCURRENCY MEASURE 297

Let us remember that:

DÉFINITION 1; A finite automaton is a 5-uple (S, Q, S, F, 6), where S is an
alphabet, QcH (set of states), ScQ and FcQ (sets of initial and terminal
states), 6 being a subset of Q x E x Q (set of transitions).

Remark: The product of n automata (defined as follows: set of
states=product of the sets of states, set of transitions = product of the sets
of transitions, terminal state=product of the terminal states) accepts the
homogeneous product of the languages LA^[1].

Notations: For each * = (i, w, j) of 5, we dénote t- the state i, the £+
the state j and wt the label w.

For each % of Q, we dénote i- the set of transitions t of 8 such that
t = (ar, iü, i) and z+ the set of transitions t of 5 such that t — (i, u;, ar).

DÉFINITION 2: A jSnitó probabilistic automaton is a 5-uple (£, Q, 5, F ,
5), wfere S w an alphabet, QcH (^/ of states), ScQ (set of initial states)
and FcQx[0,l] (set of terminal states and the corresponding absorption
probabilities), <5c<3x£x[O, l]xQ the set of transitions and, if p(t) (resp.
p(i)) is the probability associatedwith the transition t (resp. the terminal state
i), wegeti#F=ï J2t=i+ P(*) = 1, and i e F => T,t=i+ Pi*) = 1 ~ P(*)-

Remark: i is an absorbing state if p^- = 1, where p^i is the probability
to remain in the state i.

3. REPRESENTATION OF CONCURRENT SYSTEMS

First, we show how to modelize concurrent processes.

3.1. Arnold-Nivat's model

In this model, a system of processes is represented by a synchronized
product, ie. an homogeneous product, where the transitions labelled by
some forbidden vectors have been removed (see [1]).

3.2. Construction of a synchronized system

The fact that a process is blocked is modeled by the symbol # , and L'Ai
is now replaced by LA«W #*(W is the classical shuffle product), and our
concurrency measure will correspond to the average number of # ' s over all
words accepted by the automaton.

vol. 30, n° 4, 1996

298 D. GENIET et al

3.3. Probabilistic automaton associated with Arnold-Nivat's model

The basic idea is to transform the previous automaton into a probabilistic
one: the transitions are labelled with probabilities whose values are obtained
through experiments on the program. Our assumptions are these of the
synchronized product {see [1]).

3.4. Computation of the transition probabilities

The probabilities associated with the transitions of the product automaton
are computed from the probabilities of the transitions of the automata
associated with the sequential processes. In the following, we consider a
transition t of the product automaton to be issued from a state s of the
product automaton. t is the vector (^)i€[i,n]>

 e a c n ** being a transition
of the automaton Ai. We dénote 5* = {i G [l,n]\wy = # } , and

H(t) = IIt€[i,n]\5tP(*«)- L e t $ = E t€ i +
n (*) b e t h e o u t P u t Pr°babilistic

flow of state i. The probability of each t issued from i is the output flow the
value n(t) represents in the set i+ : p(t) = -$-.

The product of a family of probabilistic automata is a probabilistic
automaton: its algebraic structure is the homogeneous product of the
algebraic structures of the component probabilistic automata; the probabilities
associated to its transitions fulfil the conditions of Définition 2: p(i) +

S*ei+ ?(*) = £ t 6 i + ^ = è Et e ï + n(t) = | = 1 (one can see that this
property holds for terminal states, too).

The effective détermination of the probabilities is very simple for
imperative statements (p(t) = 1), but must be detailed for test or loop
statements as well as for absorption.

3.4.1. Tests and absorption

In the flowchart automaton A, a test statement If.„Then...Else or
Case...Of...End générâtes a state s with many output transitions (^)«e[i.p] :

|s+| > 1 (see Fig. 1). We détermine the corresponding probabilities in the
following way: the program is executed N times, and we count the number

Figure 1.

Informatique théorique et Applications/Theoretical Informaties and Applications

A MARKOVIAN CONCURRENCY MEASURE 299

of times the transition t% is performed. Then, we take p(U) = ^jlp—.

Absorption is treated in the same way: we count the number of times a
terminal state is reached.

3.4.2. Loops / \ Q

A loop can be represented by the diagram O ^ " 1-q. Statistics on the
average number of looping steps performed by real programs lead us to
consider that the random variable X (equal to the number of steps required
for leaving the loop) has a geometrie distribution p(X = n) = qn~l{l — q)
(with q e [0,1]), hence E(X) = ^ .

Remark: When the implemented algorithm is well-known, the study of
its speed of convergence gives an upper-bound for the maximal number of
steps. From this, we deduce an upper bound for E(X), and therefore for q.

4. THE CONCURRENCY MEASURE

The probabilistic extension of Arnold-Nivat's model leads to an absorbing
Markov chain model. Evaluating the average length of a word accepted by
the synchronized automaton is equivalent to evaluating the length of the
paths before absorption in the corresponding Markov chain.

Let n (resp. a) be the average number of steps (resp. # ' s) until absorption,
and p the number of processes.

DÉFINITION 3: The concurrency measure of the System is the ratio ^~.

5. COMPUTATION OF THE CONCURRENCY MEASURE

The concurrency measure, as defined above, involves two mean values
whose computation is easy thanks to classical results of Markov chain
theory ([7], [14]).

DÉFINITION 4: A Markov chain is a triple (£", so, M), where E is the set

of states, so E E the initial state, and M — {(mij)) a ExE matrix such

that Vt e E, Ej l l f 'm^ = 1.
A state % £ E is called transient if the Markov chain comes back only a

finite number of times to i (otherwise, % is called récurrent).

vol. 30, n° 4, 1996

300 D. GENIET et al

Our approach is based on properties of the fundamental matrix of an
absorbing Markov chain. Définition and main properties are summerized
below {see [7] and 114] for details).

Consider a Markov chain with s non absorbing states, and \E\ — s absorbing
states. Then, the corresponding matrix M = (mij) can be rewritten in the

form M = (jj^f j , where W is the submatrix of transitions between the
transient states, Is is the sxs identity matrix (in our case, Is is reduced to 1).

PROPOSITION 1: The matrix Is — W has an inverse N — (Is — W) " 1 .

N is called fundamental matrix of the Markov chain.

PROPOSITION 2: Let N = (rtij) be the fundamental matrix of an absorbing
Markov chain. Then.

1. riij is the average number of times the chain reaches the state j , if

the starting state is i, and mi — ^ j l i nij z5 tne aver&ge number of
steps before absorption.

2. Let dij be the probability that starting from the state i, the absorption
takes places in state k and dénote by A the matrix (dij), then A = N.R
(i.e. A = R + W.A).

Remark: All information necessary for Computing the concurrency measure
is therefore contained in M, W, and A. Only classical opérations on matrices
are necessary for its computation.

6. AN EXAMPLE

We consider the classical mutual-exclusion problem (see Fig. 2). The
corresponding language is L — (r*d#*c + 5)*, where the actions are r (not
critical section), d (asking for the resource), # (waiting when the resource
is used by another process), c (critical section) and s (leaving the critical
section).

For simplicity, we consider that all theses processes begin and terminate
their exécution simultaneously. L is accepted by the automaton given in
Figure 2.

(r.l-q-a) (#,) (c,l-p)

Informatique théorique et Applications/Theoretical Informaties and Applications

A MARKOVIAN CONCURRENCY MEASURE 301

6.1. Construction of the synchronize automaton

Let:

1. 7 be the average time of each owning of the critical section.

_ „ /Number of transitions from the state 3 to 3
7 = 1 + E[

\ The chain is in state 3

~ , w 1

E (777) means the expected conditional value.
2. ~p be the average time spent in the critical section.

_ /Number of transitions from the state 1 to 1
\ The chain is in state 1

g) (S)

3. a be the average number of request for the critical section.

_ ^/Number of transitions to state 2
a = 1 + El — - —

\ The chain is m state 1

Synchronization fobids simultaneous performing of the critical section by
two different processes. Therefore, all transitions whose label contains more
than one occurrence of the letter c must be delected. The synchronized
automaton of two processes is drawn on Figure 3. The transitions labelled
(c, #) and (# , c) from state (2.2) respectively to states (3,2) and (2,3)
have the same probability: this is due to the f act that there is no priority
for the processes.

The Markov chain associated with the synchronized automaton is given
in Figure 4.

6.2. Use of the concurrency measure

The computing of the concurrency measure with different values for the
indicators 7, p and a leads to different values for the efficiency of the
concurrent System. If n is the average waiting time bef ore absorption {Le.

vol. 30, n° 4, 1996

302 D. GENIET et al

the average number of statements by session), these expérimentations are
summarized in the following array:

7

•5

IQ
10

5

5

P

10

10

5

5

10

a

5

5

5

10

10

q
pn"

0.2459

0.3798

0.3806

0.2509

0.2474

#c

Figure 3.

Here, it is pointed out that the performances of the System are less efficient
when processes stay a long time in the critical section. So, we conclude that
a system of concurrent processes sharing a resource is more efficient when
there are many short jobs using the resource than when there are few long
jobs... This is a known result.

7. CONCLUSION

Evaluating the efficiency of concurrent processes is a very difficult
problem. This paper is a contribution to the définition and computation
of a simple and good concurrency measure. It combines the power of

Informatique théorique et Applications/Theoretical Informaties and Applications

A MARKOVIAN CONCURRENCY MEASURE 303

(1-q-a)2

2a2-2a+l
3

a2

2 l l l ^ l

4 m di ;

2a2jja+l__

\ \ ^

(JjT ^

/

rp(l-q-a)
! i_a

q
~T-a

VS rl 3
*

Li

1-a

n
Al

UiffiJ

\\ T
2

q

c—r
i S

T

j__
z

^ . 1

{2 ;

i

ï+p

2a2-2a+l

Figure 4.

Arnold/Ni vat' s model with the Markov chain theory, and avoids the
computational drawbacks of previous measures ([3], [10], [11]).

We can also consider the concurrency measure as a stochastic process
whose expected value has been investigated in this paper. Therefore, it
would be interesting to know the variance and higher moments, the limiting
distributions and the probability that at a time t, p processors among n are
active. The techniques used for the analysis of dynamic data structures ([8],
[9], [13]) seem to be helpful. These more theoretical aspects are the object
of work in progress.

ACKNOWLEDGMENTS

The authors thank A. Arnold and the référées for pertinent comments.

REFERENCES

1. A. ARNOLD, Finite transition Systems, Prentice Hall, 1994.

2. A. ARNOLD and M. NIVAT, Comportements de processus L.I.T.P., Rapport No. 82-12,
Univ. Paris, France.

vol. 30, n° 4, 1996

304 D. GENIET et al

3. J. BEAUQUIER, B. BÉRARD and L. THIMONIER, On a concurrency measure, LRI Orsay
Techn. Report No. 288, 1986, and 2nd I.S.C.I.S. proc, Istanbul 1987, Turkey,
pp. 211-225.

4. J. M. AUTEBERT, Langages algébriques, Masson, 1987.
5. B. CHARRON-BOST, Mesures de la concurrence et du parallélisme des calculs répartis,

Thèse, Univ. Paris-Vu, France, 1989.
6. S. EiLENBERG, Automata, languages and machines, Academie Press, 1976.
7. W. FELLER, An introduction to probability theory, Addison-Wesley, 1968.
8. P. FLAJOLET, Analyse d'algorithmes de manipulation d'arbres et de fichiers, B.U.R.O.

Cahiers, 34-35, 1981.
9. J. FRANÇON, B. RANDRIANARIMANANA and R. SCHOTT, Dynamic data structures with finite

population: a combinatorial analysis, F.C.T'89 proc, L.N.C.S. 380, pp. 162-174.
10. J. FRANÇON, A quantitative approach of mutual exclusion, RA.LR.O. Theoretical

Informaties and Applications, No, 20, 1986, pp. 275-289.
IL D. GENIET and L. THIMONIER, Using generating functions to compute concurrency,

F.C.T.'89 proc, L.N.C.S., 380, pp. 185-196.
12. D. GENIET, Automaf: un système de construction d'automates synchronisés et de

calcul de mesure du parallélisme, Thesis, Univ. Paris-XI, France, 1989.
13. G. LOUCHARD, B. RANDRIANARIMANANA and R. SCHOTT, Dynamic algorithms in D.

E. Knuth's model: a probabilistic analysis, I.C.A.LP.'89 proc, LN.C.S., 372,
pp. 521-533, Stresa, Italy, 1989, full version in T.C.5., 93, 1992, pp. 210-225.

14. C. PAIR, M. MOHR and R. SCHOTT, Construire les algorithmes, Dunod Informatique,
1988.

Informatique théorique et Applications/Theoretical Informaties and Applications

