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Communicated by G. LoNGo

Abstract. — Let G=(S, E) be a subgraph of K, =(S, F), the complete graph on n vertices. Let v be
a function from E to R*. We prove two theorems on the extensibility of v. Every function v extends
to a metric on F iff G is a forest. The function v extends to an ultrametric on F if and only if for all
non-trivial cycles p in G, mult (p)>1, where mult (p) depends on the values of v on paths.

Résumé. — Soit G=(S, E) un sous-graphe de K, =(S, F), le graphe complet sur n sommets. Soit v
une fonction de E dans R*. Nous prouvons deux théorémes sur le prolongement de v. Toute fonction
v se prolonge en une métrique sur F si et seulement si G est une forét. La fonction v se prolonge en
une ultramétrique sur F si et seulement si pour tout cycle non trivial p dans G, on a mult (p)>1, ou
mult (p) dépend des valeurs de v sur les chemins.

INTRODUCTION

Let S be a set of points and u a non-negative real-valued function on SxS.
The function u is called a metric if

Lou(x, y)20;

2. u (x, y)=0;

3. u (x, y)=u(y, x);

4. u (x, y)Su (x, z)+u (z, y).

If for all z in S, u also satisfies

5. u (x, y)Smax {u(x,y), u(z,y)},
then u is called an ultrametric.

Ultrametrics satisfy more than the triangle inequality; inequality (5)
prevents scalene triangles; that is, for any three points x, y, z of §, it is
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impossible that u (x, y)<u (y, z)<u (x, z). To see why, note that (5) implies
u (x, z)Smax {u (x,y), u(y, z)}=u(y, z), a contradiction. Thus, any three
points in an ultrametric space determine either an isosceles triangle or an
equilateral triangle.

Ultrametrics arise in the context of p—adic evaluations on infinite fields [5].
there is interest in creating arbitrary ultrametrics on finite sets, in particular,
on K,, the complete graph on » points [1 to 4]. Since many ultrametric
extensions are known to be NP-complete [3], it is most interesting that one
extension can be done in a polynomial number of steps.

THEOREM 1: Let G=(S, E) be a subgraph of the complete graph K, =(S, F)
and let v be an arbitrary function from E to R*. If G is a forest, then v extends
to an ultrametric on F in at most O (n2) steps.

Proof: Extend G to a spanning tree Q for K,. Extend v to the edges
of O-G by assigning arbitrary positive number to each such edge. We use
induction on # to extend v to an ultrametric # on all edges of K,, in at most
(n+1) (n-2)/2 additional steps.

Basis: There is nothing to prove for n=1 or n=2. The case of
n=3 is the so called isosceles restriction of an ultrametric. Namely,
we define the ultrametric ¥ on the missing edge to be the maximum
of v on the other two sides. This extension takes one additional
step.

Assume the result for » and consider the case n+1. There exists an end x
of the tree Q. Let U=S—{x}. Let T be the restriction of Q to U. By
induction, in at most (n+1) (n—2)/2 additional steps, we can find an ultrametric
extension u to U of the restriction of v to 7. As x is an end, there exists a
unique y in U with (x, y) in Q. Let w=v (x, y). For each z in U-{y}, set
u (x, z)=max {w, u (y, z)}. The number of steps to create this extension is at
most n+((n+1) (n+2)/2)=(n+2) (n+1)/2 as claimed.

To check that our extension u is an ultrametric, we need only verify
u (a, b)<max {u (a, c¢), u (b, c)} for all choices of distinct a, b, ¢ in S.
There are two cases: (1) x is not in {a, b, c}. 2) x is in {a, b, ¢}. In
case (1), the inequality holds as u is an ultrametric on U. In case (2), there
are two subcases: (I) y is in {a, b, ¢}, (II) y is not in {a, b, c}. In case (I),
the inequality holds by construction. In case (II), there are three subcases:
(A) x=a, (B) x=b, (C) x=c. Since y is not in {a, b, c}, each of these three
verifications is straightforward. This concludes the proof of theorem 1.
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TueoreM 2: Let G=(S, E) be a subgraph of the complete graph K,=(S, F).
Then the following are equivalent:

(a) Every function v : E — R* extends to a metric on F;

(b) G is a forest.

Proof: Theorem 1 proves that (1 b) implies (1 a). To show (1 @) implies
(1 b) it suffices to prove that if G is not a forest, then there exists a
function v from E to R* that does not extend to a metric on F. If
G is not a forest, then G contains a (simple) cycle ey, e, .. .., e,
k>2. Define v on e;, 1Si<k, to be arbitrary positive numbers. Define
v on the edge e, to be any number greater than the sum of v (e;),
1<i<k. Since v fails to satisfy the triangle inequality on the edge e,
no extension of v can be a metric on F. This concludes the proof of
theorem 2.

We now extend theorem 2 to ultrametrics. We will see that whether a
particular function v : § — R* has an ultrametric extension depends on the
behaviour of v on non-trivial cycles of G. A cycle is any sequence of edge
connected vertices vg . . . v, V9=V, allowing repeated vertices and repeated
edges. A cycle is trivial, by definition, if it is a cycle with only two edges.

Let p be a (not necessarily simple) path in G. Let max (p) denote the
largest value of v.on p. Let mult (p) denote the number of times v attains
max (p) on p. Clearly, for all paths p, mult (p)=1.

We require two preliminary lemmas.

Lemma 3: A symmetric function u : SxS—{(s,s):s is in S} — Rt is an
ultrametric if and only if for each triple x, y, and z of distinct members of S,
mult (xyzx)>1.

Proof: If u is an ultrametric, then as remarked at the start of
the paper, every triangle is either isosceles or equilateral, that is,
mult (xyzx)>1. Conversely, to show that # must be an ultrametric when

mult (xyzx)>1 on all triangles, it suffices to observe that (5) always
holds.

LemMma 4: Let G=(S, E) be a subgraph of the complete graph K,=(S, F).
Let x and y belong to S. Let v be an arbitrary function from E to R*. Let

Q be the set of all paths from x to y in G. Let P be the set of all paths p

in Q such that mult (p)=1. If all non-trivial cycles p in G satisfy mult (p)>1,
then

(1) For any p1 and p3 in P, max (p;)=max (p;).
(2) For each q in Q and each p in P, max (g) 2 max (p).
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Proof: We prove (1) by contradiction. Suppose there were ele-
ments p; and p; of P with max (p;)<max (py). Since c=p1;02"1
is a non-trivial cycle in G, we have by hypothesis mult (c)>1.
Thus, there are at least two places that p, takes on its max,
contrary to p, belonging to P. This proves (1). Similar proof holds
for (2).

THEOREM 3: Let G=(S, E) be a subgraph of the complete graph K,=(S, F). A
function v : E — R* extends to an ultrametric on F if and only if

(%) for all non-trivial cycles p in G, mult (p)>1.

Proof: First assume that v extends to an ultrametric on F, but that
(x) fails for some non-trivial cycle p=xp ...x, Of all cycles p with
mult (p)=1, choose one whose lengyh, n, is minimal. By lemma 3,
mult (p)>1 on all 3-edged cycles. Therefore, » must be >3. Without
loss of generality, let w=max (p)=v (xp, x1). Since mult (p)=1, v (x1, x2)
must be strictly less than w. Applying lemma 3 to xp x; x xp, and
knowing that v (xg, x;)=w and v (x1, x2)<w, we conclude that v (xg, x2)
must also be w. Now form the cycle g=xp xp ... x, of length n-1.
Since mult (9)=1 we have obtained a contradiction to the choice
of n.

Conversely, suppose that (x) holds. To prove that v extends to an
ultrametric, we consider two cases: G is complete, G is not complete. If
G is complete, and (%) holds for all triangles of G, then by lemma 3, v must
be an ultrametric on S. On the other hand, if G is not complete, then there
are x and y in S for which (x, y) is not in E. Let J be the union of E and
the edge (x, y) and let H=(S, J). Proceeding by induction on the cardinality
of E, it suffices to show that H satisfies (%).

Let Q be the set of paths p from x to y in G. Let P be the set of paths
in Q such that mult (p)=1. By lemma 4,

(1) for any p; and p; in P, max (p;)=max (p3);

(2) for all ¢ in Q and all p in P, max (g) 2max (p).

Define v on the edge (x, y) to be min {max (g): q in Q}. We need only
show that the extension v from J to R* still satisfies (x).

Let s=xq . . . x, be a non-trivial cycle in H. Since G satisfies (x) there
is nothing to prove unless the edge (x, y) belongs to the cycle s. Therefore,
without loss of generality, we may take y=xg and x=x;. Thus, g=x; . . . xp,
a path x to y, belongs to Q. By the definition of v (x, y) and the choice of w,
v (x, y)=w<max (g). There are two possibilities: mult (g)>1, mult (g)=1. If
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mult (g)>1, then mult (s)>1 and we are done. If mult (¢)=1, then g belongs
to P. By (2) and the construction, max (g) must itself be w. Since v (xq, x1)
is also w, we can conclude in this case also that mult (s)>1. This completes
the proof of theorem 3.

Theorem 2 and 3 differ significantly in computational requirements. Testing
for a forest can be done in a polynomial number of steps; testing (x) for all
cycles may require a factorial number of steps. For example, consider the
complete graph on n vertices with a few edges removed. Such a graph has
more than n! non-trivial cycles.

The authors wish to thank the referee for theorem 3.
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