J. HIGGINS D. CAMPBELL Prescribed ultrametrics

Informatique théorique et applications, tome 27, nº 1 (1993), p. 1-5. http://www.numdam.org/item?id=ITA 1993 27 1 1 0>

© AFCET, 1993, tous droits réservés.

L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informatics and Applications (vol. 27, n° 1, 1993, p. 1 à 5)

PRESCRIBED ULTRAMETRICS (*)

by J. HIGGINS $(^1)$ and D. CAMPBELL $(^1)$

Communicated by G. LONGO

Abstract. – Let G = (S, E) be a subgraph of $K_n = (S, F)$, the complete graph on n vertices. Let v be a function from E to R^+ . We prove two theorems on the extensibility of v. Every function v extends to a metric on F iff G is a forest. The function v extends to an ultrametric on F iff and only if for all non-trivial cycles p in G, mult (p)>1, where mult (p) depends on the values of v on paths.

Résumé. – Soit G = (S, E) un sous-graphe de $K_n = (S, F)$, le graphe complet sur n sommets. Soit v une fonction de E dans R^+ . Nous prouvons deux théorèmes sur le prolongement de v. Toute fonction v se prolonge en une métrique sur F si et seulement si G est une forêt. La fonction v se prolonge en une ultramétrique sur F si et seulement si pour tout cycle non trivial p dans G, on a mult (p)>1, où mult (p) dépend des valeurs de v sur les chemins.

INTRODUCTION

Let S be a set of points and u a non-negative real-valued function on $S \times S$. The function u is called a *metric* if

- 1. $u(x, y) \ge 0;$
- 2. u(x, y)=0;
- 3. u(x, y)=u(y, x);
- 4. $u(x, y) \le u(x, z) + u(z, y)$.

If for all z in S, u also satisfies

5. $u(x, y) \leq \max \{u(x, y), u(z, y)\},\$

then *u* is called an *ultrametric*.

Ultrametrics satisfy more than the triangle inequality; inequality (5) prevents scalene triangles; that is, for any three points x, y, z of S, it is

^(*) Accepted April 21, 1992.

AMS Classifications. Primary 54E35, 68R10; Secondary 05C05, 68Q25.

^{(&}lt;sup>1</sup>) Department of Computer Science, Brigham Young University, Provo, Utah 84602, U.S.A.

Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/93/01 1 5/\$ 2.50 © AFCET-Gauthier-Villars

impossible that u(x, y) < u(y, z) < u(x, z). To see why, note that (5) implies $u(x, z) \leq \max \{u(x, y), u(y, z)\} = u(y, z)$, a contradiction. Thus, any three points in an ultrametric space determine either an *isosceles* triangle or an *equilateral* triangle.

Ultrametrics arise in the context of p-adic evaluations on infinite fields [5]. there is interest in creating arbitrary ultrametrics on finite sets, in particular, on K_n , the complete graph on n points [1 to 4]. Since many ultrametric extensions are known to be NP-complete [3], it is most interesting that one extension can be done in a polynomial number of steps.

THEOREM 1: Let G = (S, E) be a subgraph of the complete graph $K_n = (S, F)$ and let v be an arbitrary function from E to R^+ . If G is a forest, then v extends to an ultrametric on F in at most $O(n^2)$ steps.

Proof: Extend G to a spanning tree Q for K_n . Extend v to the edges of Q-G by assigning arbitrary positive number to each such edge. We use induction on n to extend v to an ultrametric u on all edges of K_n in at most (n+1) (n-2)/2 additional steps.

Basis: There is nothing to prove for n=1 or n=2. The case of n=3 is the so called isosceles restriction of an ultrametric. Namely, we define the ultrametric u on the missing edge to be the maximum of v on the other two sides. This extension takes one additional step.

Assume the result for *n* and consider the case n+1. There exists an end *x* of the tree *Q*. Let $U=S-\{x\}$. Let *T* be the restriction of *Q* to *U*. By induction, in at most (n+1) (n-2)/2 additional steps, we can find an ultrametric extension *u* to *U* of the restriction of *v* to *T*. As *x* is an end, there exists a unique *y* in *U* with (x, y) in *Q*. Let w=v(x, y). For each *z* in $U-\{y\}$, set $u(x, z)=\max\{w, u(y, z)\}$. The number of steps to create this extension is at most n+((n+1) (n+2)/2)=(n+2) (n+1)/2 as claimed.

To check that our extension u is an ultrametric, we need only verify $u(a, b) \leq \max \{u(a, c), u(b, c)\}$ for all choices of distinct a, b, c in S. There are two cases: (1) x is not in $\{a, b, c\}$. (2) x is in $\{a, b, c\}$. In case (1), the inequality holds as u is an ultrametric on U. In case (2), there are two subcases: (I) y is in $\{a, b, c\}$, (II) y is not in $\{a, b, c\}$. In case (I), the inequality holds by construction. In case (II), there are three subcases: (A) x=a, (B) x=b, (C) x=c. Since y is not in $\{a, b, c\}$, each of these three verifications is straightforward. This concludes the proof of theorem 1.

THEOREM 2: Let G=(S, E) be a subgraph of the complete graph $K_n=(S, F)$. Then the following are equivalent:

- (a) Every function $v : E \to R^+$ extends to a metric on F;
- (b) G is a forest.

Proof: Theorem 1 proves that (1 b) implies (1 a). To show (1 a) implies (1 b) it suffices to prove that if G is not a forest, then there exists a function v from E to R^+ that does not extend to a metric on F. If G is not a forest, then G contains a (simple) cycle e_1, e_2, \ldots, e_k , k>2. Define v on e_i , $1 \le i < k$, to be arbitrary positive numbers. Define v on the edge e_k to be any number greater than the sum of $v(e_i)$, $1 \le i < k$. Since v fails to satisfy the triangle inequality on the edge e_k , no extension of v can be a metric on F. This concludes the proof of theorem 2.

We now extend theorem 2 to ultrametrics. We will see that whether a particular function $v: S \to R^+$ has an ultrametric extension depends on the behaviour of v on non-trivial cycles of G. A cycle is any sequence of edge connected vertices $v_0 \ldots v_n$, $v_0 = v_n$, allowing repeated vertices and repeated edges. A cycle is trivial, by definition, if it is a cycle with only two edges.

Let p be a (not necessarily simple) path in G. Let max (p) denote the largest value of v on p. Let mult (p) denote the number of times v attains max (p) on p. Clearly, for all paths p, mult $(p) \ge 1$.

We require two preliminary lemmas.

LEMMA 3: A symmetric function $u: S \times S - \{(s, s) : s \text{ is } in S\} \rightarrow R^+$ is an ultrametric if and only if for each triple x, y, and z of distinct members of S, mult (xyzx) > 1.

Proof: If u is an ultrametric, then as remarked at the start of the paper, every triangle is either isosceles or equilateral, that is, mult (xyzx)>1. Conversely, to show that u must be an ultrametric when mult (xyzx)>1 on all triangles, it suffices to observe that (5) always holds.

LEMMA 4: Let G=(S, E) be a subgraph of the complete graph $K_n=(S, F)$. Let x and y belong to S. Let v be an arbitrary function from E to R^+ . Let Q be the set of all paths from x to y in G. Let P be the set of all paths p in Q such that mult (p)=1. If all non-trivial cycles p in G satisfy mult (p)>1, then

(1) For any p_1 and p_2 in P, max $(p_1) = \max(p_2)$.

(2) For each q in Q and each p in P, $\max(q) \ge \max(p)$.

vol. 27, nº 1, 1993

Proof: We prove (1) by contradiction. Suppose there were elements p_1 and p_2 of P with max $(p_1) < \max(p_2)$. Since $c = p_1 p_2^{-1}$ is a non-trivial cycle in G, we have by hypothesis mult (c) > 1. Thus, there are at least two places that p_2 takes on its max, contrary to p_2 belonging to P. This proves (1). Similar proof holds for (2).

THEOREM 3: Let G = (S, E) be a subgraph of the complete graph $K_n = (S, F)$. A function $v : E \to R^+$ extends to an ultrametric on F if and only if

(*) for all non-trivial cycles p in G, mult (p)>1.

Proof: First assume that v extends to an ultrametric on F, but that (\star) fails for some non-trivial cycle $p=x_0 \ldots x_n$. Of all cycles p with mult (p)=1, choose one whose length, n, is minimal. By lemma 3, mult (p)>1 on all 3-edged cycles. Therefore, n must be >3. Without loss of generality, let $w=\max(p)=v(x_0, x_1)$. Since mult (p)=1, $v(x_1, x_2)$ must be strictly less than w. Applying lemma 3 to $x_0 x_1 x_2 x_0$, and knowing that $v(x_0, x_1)=w$ and $v(x_1, x_2)<w$, we conclude that $v(x_0, x_2)$ must also be w. Now form the cycle $q=x_0 x_2 \ldots x_n$ of length n-1. Since mult (q)=1 we have obtained a contradiction to the choice of n.

Conversely, suppose that (\star) holds. To prove that v extends to an ultrametric, we consider two cases: G is complete, G is not complete. If G is complete, and (\star) holds for all triangles of G, then by lemma 3, v must be an ultrametric on S. On the other hand, if G is not complete, then there are x and y in S for which (x, y) is not in E. Let J be the union of E and the edge (x, y) and let H=(S, J). Proceeding by induction on the cardinality of E, it suffices to show that H satisfies (\star) .

Let Q be the set of paths p from x to y in G. Let P be the set of paths in Q such that mult (p)=1. By lemma 4,

(1) for any p_1 and p_2 in *P*, max $(p_1) = \max (p_2)$;

(2) for all q in Q and all p in P, max $(q) \ge \max(p)$.

Define v on the edge (x, y) to be min {max (q): q in Q}. We need only show that the extension v from J to R^+ still satisfies (\star) .

Let $s = x_0 \dots x_n$ be a non-trivial cycle in *H*. Since *G* satisfies (\star) there is nothing to prove unless the edge (x, y) belongs to the cycle *s*. Therefore, without loss of generality, we may take $y = x_0$ and $x = x_1$. Thus, $q = x_1 \dots x_n$, a path *x* to *y*, belongs to *Q*. By the definition of v(x, y) and the choice of *w*, $v(x, y) = w \leq \max(q)$. There are two possibilities: mult (q) > 1, mult (q) = 1. If mult (q)>1, then mult (s)>1 and we are done. If mult (q)=1, then q belongs to P. By (2) and the construction, max (q) must itself be w. Since v (x_0, x_1) is also w, we can conclude in this case also that mult (s)>1. This completes the proof of theorem 3.

Theorem 2 and 3 differ significantly in computational requirements. Testing for a forest can be done in a polynomial number of steps; testing (\star) for all cycles may require a factorial number of steps. For example, consider the complete graph on *n* vertices with a few edges removed. Such a graph has more than *n*! non-trivial cycles.

The authors wish to thank the referee for theorem 3.

REFERENCES

- 1. M. ASCHBACHER, P. BALDI, E. BAUM and R. WILSON, Embeddings of ultrametric Spaces in Finite Dimensional Structures, S.I.A.M. J. Algebra Disc. Math., 1987, 8, pp. 564-587.
- 2. V. Z. FEINBERG, Finite Ultrametric Spaces, Dokl. Akad. Nauk S.S.S.R., 1972, 202, pp. 775-778.
- 3. M. KRV'ANEK, The Complexity of Ultrametric Partitions on Graphs, Inform. Process. Lett., 1988, 27, pp. 265-270.
- 4. N. PARGA and M. VIRASORO, The Ultrametric Organization of Memories in A Neural Network, J. Physique, 1986, 47, pp. 1857-1864.
- 5. A. C. M. VAN ROUL, Non Archimedean Functional Analysis, Marcel Dekker, New York, 1978.