Proposal for a natural formalization of functional programming concepts

<http://www.numdam.org/item?id=ITA_1988__22_3_341_0>
PROPOSAL FOR A NATURAL FORMALIZATION OF FUNCTIONAL PROGRAMMING CONCEPTS (*)

by Patrick BELLOT (1) and Djamil SARNI (2)

Communicated by J. E. PIN

Abstract. — Graal is the name of a variable-free functional programming language based on precepts coming from FP systems and Combinatory Logic. This article proposes a formalization of Graal’s concepts using a formal theory TG where the notions of uncurryfied combinator and polyadic application are included. This allows to give a clear semantics of the Graal language because TG becomes its elementary model. TG appears as a new theoretical basis for the study of applicative programming languages. TG has been conceived as a theory of intensional functions, that is to say that TG is a new formalization of Computability well suited for Computer Science.

0. INTRODUCTION

The language Graal (acronym of General Applicative and Algorithmic Language) is a very efficient functional language which does not compel variables [6, 8]. Despite of the absence of variables, the syntax is not esoteric and numerous programs have been written. Basic tools are generalized functional forms [1] and uncurryfied combinators. The main concept in programming is the combination of functions which allows a clear view on programs and their semantics. Moreover, the intrinsic nature of a program is quite

(*) Received March 1987, revised September 1987.
(1) Compagnie IBM-France, Centre Scientifique, 3 et 5, place Vendôme, 75021 Paris Cedex 01, France.
(2) Université des Sciences et Techniques d’Alger, Bar-El-Beida, Alger.

Informatique théorique et Applications/Theoretical Informatics and Applications 0296-1598 88/03 341 20/$4.00/© Gauthier-Villars
trivial in contrast with lambda-languages where a function is always a troublesome closure. Definitions of primitive functions and functionals are given using reduction rules. Consequently, Graal is implemented as a virtual graph reduction machine running on Von Neumann architectures [7]. The machine is object-oriented and its execution time is one of the fastest known by the author.

Graal is a safe language in the sense that it does not depend upon its interpretation scheme. Nevertheless, its semantics is only operational via a meta-circular interpreter. The aim of this article is to give a mathematical frame for the description of a denotational semantics which is better suited for the formal study of the language. Unfortunately, the closest theory is Combinatory Logic [9] and seems to be inadapted because of evident incompatibilities described by J. W. Backus for its FP systems [1]. As a matter of fact, CL is simple and can be used for modelling [15] but Currying and intermediate results are not features of usable functional languages. The theory which will be presented later avoids them so that it can be used for a natural modelization of functional languages.

The theory \(T_G \) can be roughly described as a Combinatory Logic with uncurryfied combinators. That is to say, application is no longer a binary operation as in classical theories such as Lambda-Calculus [12], CL, Uniformly Reflexive Structures [17] and so on. This is done by the introduction of the sequence structure which can be seen as a formalization of the multiple-arguments concept. As an immediate consequence, combinators \(S \) and \(K \) must be revisited and a new combinator \(T \) is added in order to have access to components of a sequence.

\(T_G \) is described as a formal system [14, 12]. This article gives a proof of the Consistency of the theory. First of all, we must establish the Diamond Lemma for the reduction relation and the Church-Rosser property for the associated equality. Then Consistency is an easy consequence of uniqueness of normal form for a given term.

After Consistency, we prove the Completeness theorem for \(T_G \) using an Abstraction algorithm associating to a variable and a term a function which is the result of the abstraction of the variable in the term. Then a fixed-point combinator is constructed as in CL.

Following the classical presentation, we define a set of Numerals (as iterators) and the notion of Definability for a partial function of natural numbers using the absence of normal form as the definition for the concept of "undefinedness". The Definability theorem establishes that Partial Recursive
functions [13] are definable in T_G. Following Church's Thesis, we may admit that T_G can serve as a basis for the study of Computability.

The theory T_G is not handicaped by Curryfication and describes n-ary functions as n-ary terms in a natural way, not as Curried terms. This property is useful in order to get definitions which are not cumbersome. For any definition, terms are less complex than within a classical theory and yield fewer elementary reduction steps (contraction) so that computations are faster and simpler. It has been used by the language Graal and could be used by every functional language modelled with T_G. For instance, Turner's scheme of implementation [16] could be repeated for lambda-languages inheriting the efficiency of TG reduction and Abstraction algorithm.

Because of the Completness theorem, T_G allows the definition of every recursive function but we must remark that these functions have a fixed arity, and a function with variable arity such as:

$$f(x_1, \ldots, x_n) = x_1 + \ldots + x_n$$

has no simple description in classical theories, nor in T_G. It is not clear how f can be represented in CL or Lambda-Calculus without a heavy construction. Nevertheless, such functions are programmable in Lisp, in Graal and in any practical functional programming language.

Consequently, we provide a conservative extension of the theory T_G which is designed for the formalization of the concept of function with variable arity. This is done by the introduction of some sequence management combinators. Using the extended theory T_{GE}, it is possible to describe the semantics of Lisp lambda-expressions with atomic parameter list or Graal functional forms such as "reduction" whose semantics depends upon the number of arguments.

Thus, T_{GE} is presented as an extension of the mathematical theories of computable functions towards computer science and a better understanding of the practical concepts used in functional programming.

1. T_G: THE THEORY

This section presents concisely the formal system T_G. We must define three sets: formulas, axioms and inference rules. Rules are written with premises above an horizontal line and conclusions below it.
Alphabet:

K, S, T, constants.

$\nu_0, \nu_1, \nu_2, \ldots$, variables (enumerable set).

\Rightarrow, reduction symbol.

$=$, equality symbol.

$;$, application symbol.

$(,)$, parenthesis.

T_G-Terms and T_G-Sequences: the sets of T_G-terms and T_G-sequences are defined inductively:

- every constant is a term;
- every variable is a term;
- every term is a sequence;
- if a is a term and s is a sequence, as is a sequence;
- if f is a term and s is a sequence, $(f : s)$ is a term.

Thus a sequence is the concatenation of a finite number of terms. A sequence composed with terms x_1, \ldots, x_n may be denoted $x_1 \ldots x_n$. The term $(f : x_1 \ldots x_n)$ is the application of f to the sequence of arguments $x_1 \ldots x_n$.

As usual, application is associative to the left so that we could write $f : x_1 \ldots x_n : y \ldots y_m$ instead of $(f : x_1 \ldots x_n) : y \ldots y_m$.

Formulas: A formula of T_G may be $P \Rightarrow Q$ or $P = Q$ where P and Q are terms.

Notations: Notations are taken from classical theories:

- variables are denoted with small letters: x, y, z, \ldots with possible indexes
- V is the set of variables
- capital letters P, Q, \ldots which are not used for constants denote arbitrary terms, they can be indexed
- $X_1 \ldots X_n$ denotes the sequence of indexed terms $(X_i)_{1 \leq i \leq n}$.

Definition: a term which does not contain any variable is a combinator. Terms S, K and T are basic combinators. A term which contains at least one variable is an open term.
THE THEORY: The theory T_G is defined by the following axiom-schemes and rules:

(K) $K : X_1 \ldots X_n : Y_1 \ldots Y_m \Rightarrow X_1$ (constant)

(S) $S : F G_1 \ldots G_m : X_1 \ldots X_n$
 \[\Rightarrow F : X_1 \ldots X_n : (G_1 : X_1 \ldots X_n) \ldots (G_m : X_1 \ldots X_n) \] (substitution)

(T) $T : G_1 \ldots G_m : X_1 X_2 \ldots X_n \Rightarrow G_1 : X_1 X_2 \ldots X_n : X_2 \ldots X_n$ (tail)

\[\begin{align*}
(a) & \frac{X_i \Rightarrow Y_i, 1 \leq i \leq n}{F : X_1 \ldots X_n \Rightarrow F : Y_1 \ldots Y_n}, \\
(f) & \frac{F \Rightarrow G}{F : X_1 \ldots X_n \Rightarrow G : X_1 \ldots X_n}
\end{align*} \]

\[\begin{align*}
(t) & \frac{M \Rightarrow N, N \Rightarrow P}{M \Rightarrow P}, \\
(r) & \frac{M \Rightarrow M}{M = M}
\end{align*} \]

Axioms (e), (s) and (t') establish as usual that equality is the reflexive and transitive closure of reduction.

As it is presented, T_G is a formal theory [14] where deductions must be viewed as trees. A deduction of a formula F from a set of formulas S (assumptions), is a tree with formulas at the tops of the branches (leaves) being axioms or formulas in S, and F standing at the bottom (root). If such a deduction exists, we may write:

$$ T_G, S \vdash F $$

If the set S of assumptions is empty, F is called a provable formula or a theorem and the deduction is a proof. If F is a theorem, we may write: $T_G \vdash F$.

Example of proof:

$$ \begin{align*}
(t) \quad & (S) S : K K : x \Rightarrow K : x : (K : x) \quad (K) K : x : (K : x) \Rightarrow x \\
\Rightarrow & S : K K : x \Rightarrow x
\end{align*} $$

Thus: $T_G \vdash S : K K : x \Rightarrow x$.

vol. 22, n° 3, 1988
Example of combinators: As usual names are given to particularly useful combinators. Here are two such combinators:

\[I \equiv_{\text{def}} S : KK \]

\[I : x_1 \ldots x_n \]

\[\equiv S : KK : x_1 \ldots x_n \]

\[\Rightarrow K : x_1 \ldots x_n : (K : x_1 \ldots x_n) \]

\[\Rightarrow x_1 \]

\[H \equiv_{\text{def}} S : (K : S) I (K : I) \]

\[H : f g_1 \ldots g_m : x_1 \ldots x_n \]

\[\equiv S : (K : S) I (K : I) : f g_1 \ldots g_m : x_1 \ldots x_n \]

\[\Rightarrow K : S : f g_1 \ldots g_m : (I : f g_1 \ldots g_m) (K : I : f g_1 \ldots g_m) : x_1 \ldots x_n \]

\[\Rightarrow S : f I : x_1 \ldots x_n \]

\[\Rightarrow f : x_1 \ldots x_n : (I : x_1 \ldots x_n) \]

\[\Rightarrow f : x_1 \ldots x_n : x_1. \]

Definitions: If \(M \Rightarrow N \) is a reduction obtained by the contraction of exactly one redex in \(M \), \(M \Rightarrow N \) is called a contraction and can be denoted by \(M \Rightarrow_1 N \). The inverse path from \(N \) to \(M \) is called an expansion. The notions of subterm and occurrence are defined classically (as in Combinatory Logic, see [12] for instance). It is assumed that they are known, as usual!

Definitions:
– A redex is a term of form

\[K : x_1 \ldots x_n : y_1 \ldots y_m \]

or

\[S : f x_1 \ldots x_n : y_1 \ldots y_m \text{ or } T : x_1 \ldots x_n : y_1 y_2 \ldots y_m \]

– The term corresponding to a redex in axiom-schemes \((K), (S)\) or \((T)\) is a contractum.

– A term which contains no redex is a normal form (n.f.).

– Let \(M \) be a term and \(N \) be a normal form such that \(M = N \), then \(M \) is said to be normalizable and \(N \) is its normal form.

Diamond Lemma: If \(M, P \) and \(Q \) are terms such that \(M \Rightarrow P \) and \(M \Rightarrow Q \), there exists a term \(N \) such that \(P \Rightarrow N \) and \(Q \Rightarrow N \).

Church-Rosser Property: If \(M \) and \(N \) are terms such that \(M = N \), there exists a term \(L \) such that \(M \Rightarrow L \) and \(N \Rightarrow L \).

Proof: As usual, the contraction-expansion path from \(M \) to \(N \) is reduced until it becomes a two-step path [2, 11]. This is done by applications of the Diamond Lemma.

Usual figures

\[
\begin{array}{c}
H \rightarrow Q \\
\downarrow \downarrow \\
P \rightarrow L
\end{array}
\quad
\begin{array}{c}
H \\
\downarrow \\
\downarrow \\
L
\end{array}
\]

Diamond Lemma \quad Church-Rosser Property

Corollaries: The following properties are deduced from the Church-Rosser property.

- If \(M \) is a term and \(N \) a normal form such that \(M = N \), then \(M \Rightarrow N \).
- The normal form of a term is unique when it exists.

Consistency Theorem: \(T_\alpha \) is consistent.

Proof: \(S \) and \(K \) are non equal n.f.s since \(S \) cannot reduce to \(K \).

Notations

\(\equiv \) denotes the syntactic identity between terms, i.e.: \(M \equiv N \) if \(M \) and \(N \) are written with the same symbols in the same order.

\(\equiv_{\text{def}} \) denotes equality by definition. It is just a way to give name to terms in the metalanguage.

Projections: We define a family \((P_k)_{k \geq 0} \) of combinators by:

\[
P_1 \equiv_{\text{def}} S : K \ K
\]

\[
P_{k+1} \equiv_{\text{def}} T : (K : P_k)
\]

then we have: \(P_k : X_1 \ldots X_n \Rightarrow X_k \) if \(1 \leq k \leq n \).

vol. 22, n° 3, 1988
Proof: Induction on k.

$$P_1 : X_1 \ldots X_n \equiv \text{def } S : K : X_1 \ldots X_n$$

$$\Rightarrow K : X_1 \ldots X_n : (K : X_1 \ldots X_n)$$

$$\Rightarrow X_1$$

$$P_{k+1} : X_1 \ldots X_n \equiv \text{def } T : (K : P_k) : X_1 \ldots X_n$$

$$\Rightarrow K : P_k : X_1 \ldots X_n : X_2 \ldots X_n$$

$$\Rightarrow P_k : X_2 \ldots X_n$$

$$\Rightarrow X_{k+1}.$$

Definition of Substitution: Let M and N be terms and x be a variable, the result of the substitution of N for all occurrences of x in M is denoted $[N/x]M$. It is defined by induction on M:

- $[N/x]x \equiv N$;
- $[N/x]y \equiv y$ if y is an atom (variable, constant) different from x;
- $[N/x](F : X_1 \ldots X_n) \equiv [N/x]F : [N/x]X_1 \ldots [N/x]X_n$.

As usual, $[N_1/x_1 \ldots N_k/x_k]M$ denotes $[N_1/x_1] \ldots [N_k/x_k]M$ where substitutions are done in parallel. It is equivalent to admit a Variable Convention [12] (i.e.: automatic renaming of variables).

Completeness Theorem: Let M be a term and x_1, \ldots, x_n be variables, there exists a term denoted $(\lambda x_1 \ldots x_n. M)$ such that none of the variables x_1, \ldots, x_n appears in it and:

$$(\lambda x_1 \ldots x_n. M) : N_1 \ldots N_n \Rightarrow [N_1/x_1 \ldots N_n/x_n]M.$$

Proof: $(\lambda x_1 \ldots x_n. M)$ is constructed inductively

- $\lambda x_1 \ldots x_n. x_i \equiv P_i$ since: $P_i : N_1 \ldots N_n \Rightarrow N_i \equiv [N_1/x_1] \ldots [N_n/x_n]x_i$
- $\lambda x_1 \ldots x_n. y \equiv K : y$ if y is an atom different from x_1, \ldots, x_n

since: $K : y : N_1 \ldots N_n \Rightarrow y \equiv [N_1/x_1 \ldots N_n/x_n]y$

- $\lambda x_1 \ldots x_n. (F : M_1 \ldots M_m)$

$$\equiv S : (\lambda x_1 \ldots x_n. F)(\lambda x_1 \ldots x_n. M_1) \ldots (\lambda x_1 \ldots x_n. M_m)$$
since:

\[S : (\lambda x_1 \ldots x_n \cdot F) (\lambda x^1 \ldots x^m \cdot M_1) \ldots (\lambda x_1 \ldots x_n \cdot M_m) : N_1 \ldots N_n \]

\[\Rightarrow (\lambda x_1 \ldots x_n \cdot F) : N_1 \ldots N_n : ((\lambda x_1 \ldots x_n \cdot M_1) : N_1 \ldots N_n) \]

\[\Rightarrow ([N_1/x_1 \ldots N_n/x_n] F) : ([N_1/x_1 \ldots N_n/x_n] M_1) \ldots ([N_1/x_1 \ldots N_n/x_n] M_m) \]

\[\equiv [N_1/x_1 \ldots N_n/x_n] (F : M_1 \ldots M_m). \]

Property: Let \(M \) be a term, \(x_1, \ldots, x_n \) be variables, \((\lambda x_1 \ldots x_n \cdot M) \) is a normal form.

Proof: Easy induction.

Lemma 1: Let \(N \) be a normal form, \(M \) be a term, \(x_1, \ldots, x_n, y \) be variables, \([N/y](\lambda x_1 \ldots x_n \cdot M)\) is a normal form.

Proof: Trivial induction since variable \(y \) may only appear in subterms \((K : y)\) which are not the prefix of a redex.

Lemma 2: Let \(N \) be normalizable, \(M \) be a term, \(x_1, \ldots, x_n, y \) be variables, \([N/y](\lambda x_1 \ldots x_n \cdot M)\) is normalizable.

Proof: Remark that if \(L \) is the normal form of \(N \) (i.e.: \(N \Rightarrow L \)), we have \([N/y](\lambda x_1 \ldots x_n \cdot M) \Rightarrow [L/y](\lambda x_1 \ldots x_n \cdot M)\). Then apply lemma 1.

Property: Let \(M \) be a term, \(X_1, \ldots, X_n \) be normalizable terms, \(x_1, \ldots, x_n, y_1, \ldots, y_m \) be variables, then:

\[(\lambda x_1 \ldots x_n \cdot (\lambda y_1 \ldots y_m \cdot M)) : X_1 \ldots X_n \]

is normalizable.

Proof: We have:

\[(\lambda x_1 \ldots x_n \cdot (\lambda y_1 \ldots y_m \cdot M)) : X_1 \ldots X_n \]

\[\Rightarrow [X_1/x_1 \ldots X_n/x_n] (\lambda y_1 \ldots y_m \cdot M) \]

and we apply previous lemma with the variable convention.

Fixed-Point Theorem: Let \(Y : \Omega \equiv \Omega \) where \(\Omega : \Omega \equiv S : (K : S) \cdot (K : I) \cdot (S : I I) \), we have: \(Y : F \Rightarrow F : (Y : F) \).
Proof:

\[\Omega : a : b \equiv S : (K : S)(K : I)(S : I) : a : b \]
\[\Rightarrow K : S : a : (K : I : a)(S : I : a) : b \]
\[\Rightarrow S : I : (a : a) : b \]
\[\Rightarrow I : b : (a : a : b) \]
\[\Rightarrow b : (a : a : b) \]

Now: \(Y : f = \Omega : \Omega : f \Rightarrow f : (\Omega : \Omega : f) \equiv f : (Y : f) \).

Normalizing extensional fixed-point family: There exists a family \((Y_n)_{n \geq 1}\) of combinators such that for each \(n \geq 1 \), we have the following:

(a) \(Y_n \) is normalizable
(b) \(Y_n : F \) is normalizable whenever \(F \) is normalizable
(c) \(Y_n : F : X_1 \ldots X_n \Rightarrow F : (Y_n : F) : X_1 \ldots X_n \).

Proof: Let us define \(\Omega_n \equiv \lambda a. (\lambda f. (\lambda x_1 \ldots x_n.f : (a : a : f) : x_1 \ldots x_n)) : \Omega_n \)
and \(Y_n \equiv \Omega_n : \Omega_n \). We have:

(a) \[Y_n \Rightarrow (\lambda a. (\lambda f. (\lambda x_1 \ldots x_n.f : (a : a : f) : x_1 \ldots x_n)) : \Omega_n \]
\[\Rightarrow [\Omega_n / a] (\lambda f. (\lambda x_1 \ldots x_n.f : (a : a : f) : x_1 \ldots x_n)). \]

Thus, \(Y_n \) is normalizable because of previous properties of the Abstraction algorithm: \(\Omega_n \) is a normal form and the substitution of a normal form in an abstraction is a normal form.

(b) \(Y_n : F \Rightarrow [F / f][\Omega_n / a] (\lambda x_1 \ldots x_n.f : (a : a : f) : x_1 \ldots x_n) \). Because \(f \) does not occur in \(\Omega_n \) and we may suppose that \(a \) does not occur in \(F \), \(Y_n : F \) is equal to: \([F / f, \Omega_n / a] (\lambda x_1 \ldots x_n.f : (a : a : f) : x_1 \ldots x_n)\), therefore it is normalizable.

(c) \[Y_n : F : X_1 \ldots X_n \Rightarrow [X_1 / x_1] \ldots [X_n / x_n][F / f][\Omega_n / a] (f : (a : a : f) : x_1 \ldots x_n) \]
\[\Rightarrow F : (Y_n : F) : X_1 \ldots X_n. \]

Numerals: Numerals are defined following Church's numerals of Lambda-Calculus [2]. The numeral \([n] \) representing the natural number \(n \) reduces to an iterator \(\lambda f, x.f^n : x \) where \(f^0 : x \equiv x \) and \(f^{k+1} : x \equiv f(x) \). A particular
definition of numerals is the following:

\[[0] \equiv \text{def } P_2 \]

\[[n + 1] \equiv \text{def } [s] : [n] \]

where: \[[s] \equiv \text{def } S : (K : S)(K : I) I. \]

Proof:

\[[0] : f x \equiv \text{def } P_2 : f x \Rightarrow x \text{ by definition of } P_2 \]

\[[n + 1] : f x \equiv \text{def } [s] : [n] : f x \]

\[\equiv \text{def } S : (K : S)(K : I) I : [n] : f x \]

\[\Rightarrow K : S : [n] : (K : I : [n])(I : [n]) : f x \]

\[\Rightarrow S : I [n] : f x \]

\[\Rightarrow I : f x : ([n] : f x) \]

\[\Rightarrow f : ([n] : f x) \]

Definability: Let \(f \) be a \(n \)-ary partial function of natural numbers, \(f \) is definable (in \(T_G \)) if there exists a \(T_G \)-function \(F \) such that for all natural numbers \(m_1, \ldots, m_n \) and \(r \), we have:

\[f (m_1, \ldots, m_n) = r \iff T_G \vdash F : [m_1] \ldots [m_n] = [r] \]

\(f (m_1, \ldots, m_n) \) undefined \(\iff F : [m_1] \ldots [m_n] \) has no normal form.

Definability Theorem: Partial Recursive Functions are definable in the theory \(T_G \).

Conclusion

As described, \(T_G \) is a formal theory similar to Combinatory Logic[9] except that functions are uncurried. It seems to have the same power than CL since CL-combinators are easily defined in \(T_G \) and conversely, \(T_G \)-combinators can be modelized by families of CL-combinators. As a matter of fact, \(T_G \) can be used for the study of functional languages through models in the same way as CL [5, 15] but without the inconvenience mentioned in [1].

\(T_G \) could be substituted for CL in Turner’s like implementations of lambda-languages [16]. The gain would be efficiency since \(T_G \)-combinators abolish currying and consequently diminish the number of reduction steps needed for computations. The practical counterpart of \(T_G \), that is the Graal language,
For the author, the principal interest of T_G is that it provides an elementary model for the language Graal. We could say that T_G is to Graal what Lambda-Calculus is to pure lambda-languages such as KRC, ML, ... [10]. Therefore, the theory T_G provides a clean semantics for Graal where proof for programs equivalence can be formally done in the extensional theory $T_G + (\text{ext})$ using axioms similar to laws of the Algebra of Programs [1,5], and semantics of recursive functions may be established as in [6].

2. T_{GE}: THE EXTENDED THEORY

The theory T_G is adapted for the description of functions with fixed arity as are Partial Recursive functions. Nevertheless, functions with variable arity are programmable in functional languages such as Lisp or Graal. This feature is Hidden by Curryfication in classical theories. We could imagine a function $[+]$ such that for numbers x_1, \ldots, x_n, we have:

$$[+]: [x_1] \ldots [x_n] = [x_1 + \ldots + x_n]$$

whatever the length n of the argument sequence is.

In the same vein, we could need a combinator B such that:

$$(B) \quad B : f g_1 \ldots g_m : x_1 \ldots x_n \Rightarrow f : (g_1 : x_1 \ldots x_n) \ldots (g_m : x_1 \ldots x_n)$$

It is a fact that we can define a B_m for each length m of the sequence $f g_1 \ldots g_m$ but we are unable to construct a uniform B but there is no proof of this negative result at the present time.

The aim of this section is to provide a set of combinators designed for sequence management without any loss in the domain. In particular, the Church-Rosser property will remain true and the extended theory is a conservative extension of T_G.

As can be easily remarked, the purpose of S is composition meanwhile K is an eraser as in CL. T_G needed the additional T combinator for the extraction of individual arguments. As a matter of fact, the projections (argument selectors of previous section) are just compositions of K with some T's.

S, K and T are sufficient for the description of functions with fixed arity and some very particular functions with variable arity such as I. In order to deal with variable arity, we need a new combinator D which can be viewed
as an arity discriminator. D is given by the following axiom-scheme:

\[(D) \quad D : D_1 G_2 \ldots G_m : X \Rightarrow G_1 : X \quad \text{(discriminator)} \]
\[D : G_1 G_2 \ldots G_m : X_1 X_2 \ldots X_n \Rightarrow G_2 : X_1 X_2 \ldots X_n \]

But D is not sufficient since if we can decrease the number of arguments of a function (with combinator T), we are unable to increase it. Therefore, we introduce a new combinator L (for left insertion) given by:

\[(L) \quad L : FG_1 \ldots G_m : X_1 \ldots X_n \]
\[\Rightarrow F : X_1 \ldots X_n : (G_1 : X_1 \ldots X_n) X_1 \ldots X_n \quad \text{(left)} \]

We must define the theory T_{GE} as follows:

T_{GE}-terms and T_{GE}-sequences:
- every constant (S, K, T, D, L) is a term
- every variable is a term
- every term is a sequence
- if a is a term and s is a sequence, as is a sequence
- if a is a term and s is a sequence $(a : s)$ is a term.

Notations used for T_G are still valid.

The theory T_{GE}: The set of axioms of T_G is extended with axioms-schemes (D) and (L) given above.

Redex: The definition of a redex is modified. A redex is a term of the form

\[(S : f g_1 \ldots g_m : x_1 \ldots x_n) \quad \text{or} \quad (K : x_1 \ldots x_n : y_1 \ldots y_m) \]
\[\text{or} \quad (T : f g_1 \ldots g_m : x_1 x_2 \ldots x_n) \quad \text{or} \quad (L : f g_1 \ldots g_m : x_1 x_2 \ldots x_n) \]
\[\text{or} \quad (D : f g_1 \ldots g_m : x_1 x_2 \ldots x_n). \]

The definitions of a normal form and a normalizable term are still valid for T_{GE}. Before giving some examples of use of these new combinators, we must establish classical results. The first results about the extended theory are given by [11, chap. 2] for more general CRS (Combinatory Reduction Systems).

Diamond Property: The theory T_{GE} has the Diamond property.
CHURCH-ROSSER PROPERTY: The theory T_{GE} verifies the Church-Rosser property.

Proofs: Reduction rules of T_{GE} are left-linear and non-ambiguous. That is to say that there does not exist two axioms $M \Rightarrow N$ and $M' \Rightarrow N'$ with syntactically identical left members (non-ambiguous) and that in any axiom-scheme $M \Rightarrow N$, a metavariable does not have more than one occurrence in M (left-linear). These two properties mean that T_{GE} is a regular CRS in which the preceding results are always provable[11].

All general deductions from the CR-property (such as unicity of $n.f.$, Consistency, and so on) are still valid in T_{GE} and we admit them without repeating proofs for T_{GE}. The following property establishes the Consistency of T_{GE} in another way.

Property: T_{GE} is a conservative extension of T_G.

3. EXAMPLES OF USE OF T_{GE}

Now, we give some examples of representation of functions with variable arity in T_{GE}. We begin by the paradigmatic example of the generalized addition:

GENERALIZED ADDITION: We search for a combinator P such that:

$$P: [n_1][n_2] \ldots [n_k] = [+]: [n_1]([+]: [n_2] \ldots ([+]: [n_{k-1}][n_k]) \ldots)$$

where $[+]$ is a representation of the classical binary addition issued from the Representation theorem. We search for combinators P_0 and P_1 which are versions of P respectively to one and more arguments. We want:

$$P_0: N_1 = P: N_1 = N_1$$

thus it suffices to take: $P_0 \equiv_{def} I$. Now we want:

$$P_1: N_1 N_2 \ldots N_k$$

$$= [+]: N_1 ([+]: N_2 \ldots ([+]: N_{k-1} N_k) \ldots)$$

$$= [+]: N_1 (P: N_2 \ldots N_k)$$

$$= [+]: (I: N_1 N_2 \ldots N_k)((K: P: N_1 N_2 \ldots N_k): N_2 \ldots N_k)$$
Using the D combinator, we just need: $P = D : P_0 P_1$, that is to say:

$$P = D : I(S : (K : [+]) I(T : (K : P)))$$

$$= D : I(K : S : P : (K : (K : [+]) : P) (K : I : P) (S : (K : T) K : P)))$$

$$= D : I(S : (K : S) (K : (K : [+])) (K : I) (S : (K : T) K) : P)$$

$$= K : D : P : (K : I : P) (S : (K : S) (K : (K : (K : [+])) (K : I) (S : (K : T) K) : P)$$

$$= S : (K : D) (K : I) (S : (K : S) (K : (K : [+])) (K : I) (S : (K : T) K)) : P$$

Thus we obtain a fixed-point equation which can be solved and we have:

$$P \equiv \text{def } Y : (S : (K : D) (K : I) (S : (K : S) (K : (K : [+])) (K : I) (S : (K : T) K))).$$

A DISTRIBUTION OPERATOR: We search for a combinator A such that:

$$A : FG : X_1 \ldots X_n = F : (G : X_1) \ldots (G : X_n)$$

As for P. We distinguish the cases:

$$A_0 : FG : X$$

$$= F : (G : X)$$

$$= K : F : X : (G : X)$$

$$= S : (K : F) G : X$$

$$= S : (K : (P_1 : FG)) (P_2 : FG) : X \quad [P_1 \text{ and } P_2 \text{ are projections}]$$

$$= S : (S : (K : K) P_1 : FG) (P_2 : FG) : X$$

$$= S : (K : S) (S : (K : K) P_1) P_2 : FG : X.$$

$$A_1 : FG : X_1 X_2 \ldots X_n$$

$$= F : (G : X_1) (G : X_2) \ldots (G : X_n)$$

$$= K : F : (G : X_2) \ldots (G : X_n) : (K : (G : X_1)) : (G : X_2)$$

$$\ldots (G : X_n)) (G : X_2) \ldots (G : X_n)$$

$$= L : (K : F) (K : (G : X_1)) : (G : X_2) \ldots (G : X_n)$$

$$= K : L : X_1 : (K : (K : F) X_1) (S : (K : K) G : X_1) : (G : X_2) \ldots (G : X_n)$$

$$= S : (K : L) (K : (K : F)) (S : (K : K) G) : X_1 : (G : X_2) \ldots (G : X_n)$$
Let us name:

\[U[F, G, A] = S : (K : D) (S : (K : K) (S : (K : L) (K : (K : F))) (K : G)) : X_1 : X_2 \ldots X_n = \ldots X^F.iG.-.X, \ldots X_n) \ldots (G^.X, \ldots X_n) \]

Thus we may have: \[A_1 = \lambda f, g. (T : (S : (K : U[f, g, A]) I)). \]
Thus: \[A = D : A_0 (\lambda f, g. (T : (S : (K : U[f, g, A]) I))). \]
It is a fixed point equation and the solution is:

\[A = Y : (\lambda a. \lambda f, g. (T : (S : (K : U[f, g, A]) I))). \]

ARGUMENTS COUNT: How to know the number of arguments:

\[C : X_1 \ldots X_n \Rightarrow [n]. \]

We have: \([n] = P : [1] \ldots [1]\) where \([1]\) occurs \(n\) times and \(P\) is generalized addition. Thus:

\[[n] = P : (K : [1] : X_1) \ldots (K : [1] : X_n) = A : P (K : [1]) : X_1 \ldots X_n \]

Therefore, we define:

\[C \equiv_{\text{def}} A : P (K : [1]). \]

COMPOSITION: Our last example is the uniform B announced in the introduction of section 2, such that:

\[B : F G_1 \ldots G_m : X_1 \ldots X_n = F : (G_1 : X_1 \ldots X_n) \ldots (G_m : X_1 \ldots X_n) \]

Informatique théorique et Applications/Theoretical Informatics and Applications
FORMALIZATION OF FUNCTIONAL PROGRAMMING CONCEPTS

\[B : F \theta_1 \ldots \theta_m : \xi_1 \ldots \xi_n \]

\[= F : (\theta_1 : \xi_1 \ldots \xi_n) \ldots (\theta_m : \xi_1 \ldots \xi_n) \]

\[= K : F : \xi_1 \ldots \xi_n : (\theta_1 : \xi_1 \ldots \xi_n) \ldots (\theta_m : \xi_1 \ldots \xi_n) \]

\[= S : (K : F) : \xi_1 \ldots \xi_m : (\theta_1 : \xi_1 \ldots \xi_m) \ldots (\theta_m : \xi_1 \ldots \xi_m) \]

\[S : (K : F) : \xi_1 \ldots \xi_m \]

\[= (K : S) : (K : (K : F)) : \xi_1 \ldots \xi_m \]

\[= L : (K : S) : (K : (K : F)) : \xi_1 \ldots \xi_m \]

\[= L : (K : S) : (S : (K : (K : F))) : \xi_1 \ldots \xi_m \]

\[= L : (K : S) : (S : (K : (K : F))) : \xi_1 \ldots \xi_m \]

\[= S : (K : L) : (K : (K : S)) : (S : (K : (K : F))) : \xi_1 \ldots \xi_m \]

\[= T : (S : (K : L)) : (K : (K : S)) : (S : (K : (K : F))) : \xi_1 \ldots \xi_m \]

Therefore:

\[B \equiv_{\text{def}} T : (S : (K : L)) : (K : (K : S)) : (S : (K : (K : F))) \]

CONCLUSION

It is a fact that computations in TG are at least as unreadable as computations in Combinatory Logic. Especially, the kind of abstraction given in previous examples (P.A.B) is not trivial and needs a lot of attention. It could be called sequence-abstraction. Nevertheless, such a language is not intended for human manipulation but for computer science purpose.

4. COMPARISON WITH λ-CALCULUS AND LC

If we want to deal with functions having variable arity in λ-calculus [L1 we have two possible choices. The first one is to consider functions applied to a list of their arguments: \(F(\xi_1 \ldots \xi_n) \). The list can be a linked list constructed with a pairing operator or a tuple of values [2]. Lisp systems and FP systems use this method and it is possible to program functions with variable arity. But, if lists are present at the theoretical level, they must be present in the implementation and it is rather expansive to deal explicitly with lists whatever they are (linked lists or tuples) [7]. Another way is to use
a discriminable term (named □) as an end marker for arguments and to write application as: \((f \, X_1 \ldots X_n \, □)\). Then it is possible to recognize the end of the arguments sequence. It is quite a complex solution since each partial application needs a (perhaps non trivial) test on the argument. If we try to play with uncurryfied \(\lambda\)-calculus allowing the lambda-notation with a sequence of variables as first parameter of the lambda operator, the problem is not resolved unless we fall into the Lisp conception which is equivalent to a \(\lambda\)-calculus with lists [10].

5. CONCLUSIONS

This article presents a new theory named \(T_{GE}\) based on uncurryfied combinators and issued from the Graal language. First of all, the theory is able to describe functions as are other theories. Because combinators are uncurryfied, it gives rise to simplicity and efficiency. Intermediate results (partial applications) are avoided, so that it decreases the number of elementary steps in a reduction process. Because primitive combinators of \(T_{GE}\) are more powerful than in CL, the Abstraction can be very efficient, giving short terms. It is an open problem to know if there exists a linear algorithm.

The theory expresses functions in a natural way. Usual functions from mathematics and computer sciences are not curryfied and can have variable arity. Thus, models of programming languages must be more natural using \(T_{GE}\). Experience has proved (via the Graal reduction machine) that implementation of these uncurried combinators gives a very good execution time on classical Von Neumann architectures. More than this, [3] establishes a quasi-direct translation between Graal programs and Dataflow programs. Therefore, modelization of languages using \(T_{GE}\) must be an efficient technique of implementation either on classical architecture or on new ones.

Linked to Abstraction is the theoretical problem of basis. What is the minimal number of primitive combinators needed for Completness in \(T_G\) and in \(T_{GE}\)? What is the basis which gives best Abstraction algorithms for \(T_G\) and for \(T_{GE}\)? These problems have evident implementation consequences.

A remarkable point about \(T_{GE}\) is its ability to describe functions with variable arity (Fva's for short) without deep constructions (such a lists) which are not efficiently transatable in practice. This has been pointed out with some examples. It is still a problem to describe formally Fva’s, this is
necessary for the specification and the construction of a Generalized Abstraction algorithm which does not exist till now. Functions such as Fva's are used in practice and it would be useful to give a model for them.

Another prolongation of this work is the study of the extensional theory, that is $T_{GE} + (\text{ext})$. The result may be an Algebra of Programs usable in term rewriting systems as it has been done for FP [4]. It could be helpful for proving programs properties in T_{GE}, Graal and languages compiled in them.

ACKNOWLEDGMENTS

A. Belkhir, R. Legrand, V. Jay, D. Sarni have contributed to this article by interesting discussions. This work has been supported by the Greco de Programmation (Bordeaux) under project PACTE.

REFERENCES

4. F. BELLEGRARDE, Rewriting Systems on FP Expressions that reduce the Number of Sequences they Yields, A.C.M. Symposium on Lisp and Functional Programming, Austin, 1984.
