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VARIETIES OF FINITE CATEGORIES (*)

by Alex WEISS (X) and Denis THERIEN (2)

Communicated by J.-E. PIN

Abstract. - Many new results in the algebraic theory of flnite-state machines are based on the
idea of using finite catégories as the mathematical model for automata. In this article, we study
varieties of finite catégories. Our main goal is to point out the similarities and distinctions between
C-varieties and varieties of finite monoids that underlie the more traditional approach to the theory.

Résumé. - Plusieurs résultats nouveaux en théorie algébrique des machines à états finis découlent
de rutilisation de catégories finies comme modèle mathématique des automates. Dans cet article^
nous étudions les variétés de catégories finies. Notre but est d'indiquer les similitudes et les
différences entre les C-variétés et les variétés de monoïdes finis de Vapproche traditionnelle.

0. INTRODUCTION

The classical point of view in algebraic automata theory uses monoids (or
semi-groups) as models for finite-state machines. Underlying this choice of
formalization is the assumption that any séquence of symbols, drawn from a
finite input alphabet, can be fed to the machine. Denoting the input alphabet
by A, the uni verse of possible inputs is then the f ree monoid A* and a
finite-state machine can be thought of as a quotient of A* by a finite-index
congruence p.

In some interesting situations the assumption above is not realistic: for
example, when two machines are connected in series, the input séquence
processed by the "tau" machine is essentially the output séquence produced
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358 A. WEISS, D. THÉRIEN

by the "front" machine. Because of the preprocessing done, the input universe
to the "tail" machine is no longer a free monoid.

A more convenient formalization is to view the input alphabet as edges of
a graph. The possible input séquences are then paths in this graph, and a
finite-state machine becomes a finite category. This generalizes the former
point of view since a free monoid can be viewed as the set of paths in a
one-vertex graph.

The categorical approach is not just rhetorical sophistication. It has already
produced results which were not obtainable within the old framework. The
new approach was implicitely used in [2], [4], [5] and [12] to solve decidability
problems about the wreath product. Recent work [10, 8, 6] is fully exploiting
the power of the categorical model. In this paper, we will present some basic
ideas and techniques that are relevant to this area.

1. DEFINITIONS

A category C is given by a non-empty set of objects Obc and, for each i,
7 'e0b 0 families of arrows Hc(Uj). We write Hc for the union of all Hc(i,j)
and drop the subscript C whenever the context is clear. For all i, j9 k e Ob, a
binary opération is given from H (i, j) x H (ƒ, k) to H (i, k) subject to the
following axioms:

(i) for any xeH(iJ), yeH(J9 k), zeH(k, ï) (xy)z = x(yz);
( i i ) f o r e a c h j e O b , t h e r e e x i s t s a n a r r o w l 7 - e H ( j , j ) s u c h t h a t x l j = x f o r

all x in H(i, j) and ljy=y for all y in H(j, k).
We always assume that Ob is a finite set
Given a directed multigraph G with vertex set V and edge set A, the free

category G* is defined by ObG*= V and HG*(i, j) being the set of all paths of
finite length from vertex i to vertex j . Concaténation of consécutive paths is
the opération. Note that we include for each vertex i a trivial path 1̂ , which
acts as the identity arrow.

A congruence (3 on a category C is a family of équivalence relations, one
for each set H (i, j) such that for any xls yl e H (i, ƒ), x2, y2

EH (/"> &) w e n a v e

xx P^i and x2 $y2 imply xt x2 ^y1 y2. Note that two arrows can be congruent
only if they are coterminal.

The category D = C/p is then defined by Obi) = Obc and
HD (h j) = {Mp I x e Hc (i, j)} with the opération being [x]p [y]p = [xy]p.

Every category C can be obtained as the quotient of a free category by a
congruence. Let G be a graph with vertex set Obc and edge set any generating
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set for Hc. On G* define xpy iff x=y in C: then C can be identifiée! with
G*/P in an obvious way.

A relational morphism < (p, \|/ > : C -> D between two catégories consists of
an object function 9: Obc -• Ob^ and a morphism relation i[/:

(i) xv| /#0 for any x in Hc;

(ü) l i , 6 l ^ ;

(iii) (x\|/)(y\|/)ç=(xj;)\|/.

C is a subcategory of D if q> and \|/ are injective functions. C is a morphic
image of D if (p is a bijection and x)/"1 is a surjective function. We say that
Cdivides D, written CXD, if, for all x,yeHc (1,7), x \|/ O y ty ¥" 0 implies x = y.
Note that if C and D are monoids, i. e. one-object catégories, this définition
of division is the same as the one given in [3]. C and D are equivalent,
denoted by C^D, if C<D and D<C. We will write C<1_1 D if C<D with
the object function cp being injective.

LEMME 1.1: C^D iff C is a morphic image o f a subcategory of E where
E~D.

— Sufficiency of the condition follows from transitivity of ^ . As for
necessity, let < 9, \|/ >: C -> D be the division. Define E by Ob£ =
ObcxObD and

We observe that E~D via < <pls y\ft >: E -> D, defined by (f, 7)<Pi=7
x ^ — x, and <<p2, \|/2>: D -+E, defined by 7' \|/2 = (i0,7) for some fixed i0 and
x\j/2=x. Next consider the subcategory F of £ given by
Obf = {(i, iq>)\ieObc} and

^f ((Ï, i <Pl OW <P» = {71 ƒ e x \|/ for some x e Hc (i, 7)}.

Let < cp3, \|/3 >: C -> F be defined by

| ( ï , 1», 0,7

It is then checked that C is a morphic image of F. •
A category C is trivial iff | Hc (Ï, 7) | ̂  1 for all objects i, 7. The direct product

of two catégories C and D is given by Obc x D — Obc x ObD and

HcxD((U j), 0", f )) = {(x,y) IxeHc(ï, f), ^HD(/*, ƒ)}.

LEMME 1.2: C-<Z) iff C<1_1D xE where E is a trivial category and
E<X_1C.
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3 6 0 A. WEISS, D. THÉRIEN

— Let < <p, v|/ >: C -> D be a division. Let £ be defined by Ob£ = Ob c and
HE(i9j) = {(Uj)} if Hc(Uj)^0, HE(iJ) = 0 otherwise: the product in E is
given by (i, j)(j, fc) = (î, fc). It is trivial that £-<!_! C. Define next < (p^ \|/x >:
C-*DxE by i<p1=(iq>, i) and x\(/1=(xv|/) (f,;)) for xeHc(i,j): this esta-
blishes that C^1_lD x£ . The converse follows from the fact that D xE<D
whenever E is trivial. •

A C-variety V is a collection of finite catégories such that Dly D2e\ and
C<tD1 imply C e V and D x x D2 e V. This generalizes the notion of M-varieties
where only monoids (i. e. one- object catégories) are considered. Similarly to
the monoid case dealt with in [3] and [9] one can naturally define notions of
varieties of congruences on free catégories [13] and varieties of rational
languages over free catégories [11], such that 1-1 correspondance can be set
up between ail three types of varieties.

2. RESTRICTED C-VARIETIES

Since any non-empty C-variety admits catégories on more than one object
as éléments, M-varieties are not C-varieties. One way of recapturing M-va-
rieties as special cases is to allow 1-1 division only. A restricted C-variety is
defined to be a class of finite catégories closed under 1-ldivision and direct
product. As will be seen below, restricted C-varieties are essentially obtained
by restricting the type of free catégories under considération.

Let G1 = (V1, AY) and G2 = (F2> ^2) be directed multigraphs: the direct
product Gx x G2 is defined by

(VlxV29(A1xA2)U(Alx{li\i€V2})\J{{li\ieV1}xA2)).

Observe that HG\ x HG*^0iff HG* # 0 and HG* / 0 . Also, we will say that
Gi is covered by G2 if there exists a 1-1 function cp from Vx to V2 such that
whenever there is a path from i t o ; in Gt there is also a path from x cp tojcp
in G2. A family F of free catégories will be said to be admissible if whenever
it contains two free catégories induced by the multigraphs Gi and G2 it also
contains the free category induced by Gx x G2 and any free category induced
by a graph G that is covered by Gx. For any (unrestricted) C-variety V,
define

VF = {C|CeV, C = G*/pfor some G*eF}.

THEOREM 2.1: W is a restricted C-variety i/fW = VFfor some unrestricted
C-variety V and some admissible family F of free catégories.
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— Let W b e a restricted C-variety and let V be the smallest C-variety
containing W. Let F={ G* | there exists C = G*/PeW}. By définition WçV f .
Let C = G*/peV with G*eF: thus C<D with DGW and there exists some
B = G*/yGW. By lemma 1.2, C<x_xD x £ where £ is trivial and E<l_lC.
Then E ^ i ^ B a n d C e W : hence W = VF. Suppose Gf and GJ are in F: there
thus exists yx and y2 such that Cx = Gf/yx and C2 = G$iy2 are in W. The
congruence y!xy2 on (G1xG2)*5 defined by (x1 )x2)y1xy2 (yi9 y2) iff
xi Yi J>i and x2 y2j>2 is such that (Gx x G2)*/ïi X Ï2 is isomorphic to C t x C2;
hence (GA xG2)* belongs to F. Now suppose that Gf is in F and that the
graph Gx is covered by the graph G2 via the 1-1 function 9: define on G*
the congruence cpy2 by x<$y2y iff xtyyzyty', then Gx/cpy2 <i-iG*/y2 so that
GX is in F. Conversely let Ci = Gf/yl, C2 = GJ/y2. If they are both in VF then
ClxC2eY and it can be obtained as the quotient of the free category
(Gx x G2)* by the congruence yx xy2 defined above; hence Cx x C2e\F. Also
if C2eVF and C1<1_lC2, it must be that Gx is covered by G2. Hence
C1eYF. This proves that VF is a restricted C-variety. D

The family of all free catégories is certainly admissible. It turns out that
there are only three other such non-empty families. Define

M = {G*

THEOREM 2.2: M, Q, P and the set of all free catégories are the only
admissible non-empty families of free catégories,

— That M, Q and P are indeed admissible is straightforward. Conversely
if F is non-empty, it must contain the one-object, one arrow category: note
that the underlying free category is generated by the empty set. The
underlying graph covers any one-object graph: hence M^F. If M $ F there
must be in F a fc-object category G*, with /c^2: any graph underlying a free
category in Q can be covered by a direct product of copies of the graph G.
Thus g ç F . If 6 £ F , a fc-object category G* can be found in F with fc^2
and H(i, j)^0 for some i^j. Any graph underlying a free category in P can
be covered by a direct product of copies of the graph G> so that P ^ F .
Finally if P c F then Fcontains some G* with objects i0, il9 . . ., ik all different
such that H(i0, ix)9 H(iu i2), . . ., ff(ik, i0) are all non-empty. Any graph can
be covered by a direct product of copies of G so that F must then include all
free catégories. •

The M-varieties are seen to correspond exactly to the restricted C-varieties
of the form VM.
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362 A. WEISS, D. THÉRIEN

3. INDUCING C-VARIETIES FROM M-VARIETIES

Let W be a M-variety: we can view W as the restriction of some C-variety
V to one-object catégories, i. e. W = VM.V certainly détermines W uniquely:
we will see that the converse does not always hold.

Define gW = { C | C<M for some M e W }
and

W = {C\M<C and|ObM | = limplyMeW}.

The two families form C-varieties and we have g\VM = 1WM = W. We say that
gW is the C-variety globally induced by W, and IW is locally induced by W.

THEOREM 3 A: Let Y a C-variety and W = VM. Then gW<=V<=lW.

- If CegW then C<M for some MeW. Since WçV, we have MeV
and CeVas well. Let now CeV: since VM = W any monoid dividing C is in
W. Hence CelW. •

Thus W = VM uniquely détermines V iff gW — IW. This equality holds in a
number of interesting cases: for example, whenever W is a non-trivial variety
of groups [12], and when W is the variety of nilpotent monoids [14]. In the
next section we will prove that gA1 = lA1 where Ax is the M-variety of
idempotents monoids. On the other hand examples are known where the
equality does not hold ([12, 4]). The simplest such case is when W = l is the
M-variety consisting of the one-element monoid only. It is clear that gl is
the C-variety of ail trivial catégories. The category E2 described as

is in II but is not trivial. Hence g l^ l l . The C-variety 11, despite its apparent
simplicity, seems to be playing an important rôle when decomposing machines
(see [8] and [6] for example). We indicate below some interesting properties
of this variety.

Let G* be a free category with HG* generated by A. Define a preorder on
ObG* by iSj iff H(i,j)^0. Let i=j iff i^j andj^z. The preorder naturally
induces a partial order on the = classes. Let AF^A be defined by aeAF iff
a e H (i, 7) with i ̂ j. Next define on HG* (i, j)9 x$Fy iff for ail a e AF x — x0 axx

iff y=y0 ayv Thus x and y are PF-equivalent iff they traverse the same set of
edges, where only edges between distinct = -classes are considered. It is easy
to check that G*/pF is a well-defined category.

T H E O R E M 3 . 2 : C =

Informatique théorique et Applications/Theoretical Informaties and Applications



VARIETIES OF FINITE CATEGORIES 363

- If p ^ p f then \HC(U 01 = 1 for all ieOb c . Hence C e 11. Conversely let
Ce l l , x, yeHG*(iJl x$Fy. Then x = x o a 1 x 1 . . . a„x„, J = ^ o a i ^ 1 • • ^Hyn

with a ls . . . a „ e i f and x0, . . ., xH9 y09 . . ., yne(A-AF)*. Suppose
x,-, yteHG*{k9 /): there exists z,- such that X;Z;effG*(fc, k) and zfj;£eJJG*(/, /).
Thus XjZfPlfc and z ^ p l , . This gives X ^ X ^ Z J ^ - P J / ; and P ^ P f . •

An important property of catégories in 11 is that C-<M for any monoid
M that is sufficiently large. This is equivalent to the following theorem of
Tilson [10].

THEOREM 3.3: l l ç g W for any non-trivial M-variety W.

- By theorem 3.2 it suffices to show that C = G*/PF divides some monoid
in W. Suppose AF = {au . . ., an}. Let M e W with | M | > 1 and choose any
m in M different from the identity. Define < <p, \|/ >: C -> M x . . . x M (n
times) by letting z'cp be the unique object of M x . . . x M for all i e O b c and,
for ateAFi a£\|/ = (l, . . ., i, . . ., 1) where the unique m in the vector at\)/
occurs in the f-th position: if aeA — AF then a\|/ = (l , . . ., 1): \|/ is extended
in a unique way to Hc. Since a path x in G* can traverse an edge in AF at
most once we get x\|/ = (wl5 . . ., un) where U; = m if x = x o a i x 1 and u t-=l
otherwise. This yields that x \|/ characterizes [X]PF, i. e. <(p, \|/ > is a
division. •

In gênerai, it is not known at present if gW and 1W are the only possible
C-varieties V such that VM = W. This is probably not so but no examples
are known. At least the case W = l is settled.

THEOREM 3.4: If\M = l then V = gl or V = U.

- Suppose that g l ^ V : there exists C e V and i, jeObc such that
| H (ij) | _ 2 . It cannot be that i=j otherwise C would not be in 11. Hence
E2^C. We claim that G*/PF divides a direct product of copies of E2 for any
free category G*. The theorem follows from this claim.

L e t ^ F = {aX ) . . ., an}: then PF = Pi n - . . n p n where x p ^ i f f x , j e / / 0 , k)
and x = x o a i x 1 iff y =yoaiyv It thus suffices to show that GVP^/ ï^- Suppose
afe//(Mis vt). Partition the objects of G* in three sets: Vl = {v\H(v9 ui)^0},
V2 = {v\H(vh v)^0} and V3 consists of the remaining vertices. Define
<cp, \|/>: G * / P I ^ £ 2 by vq> = 2 if veV2 and u<p= 1 otherwise, and a\|/ = s if
a = ah a\|/= 1 x if aeH(u,v) with veVlUV3, a\|/—12 if aeH(u,v) with
ueV2 and a\|/ = f otherwise. The reader will check that <cp, \|/> is a well
defined relational morphism: moreover x\|/ = s iff x = x o a I x 1 so that < cp, v|/>
is indeed a division, n

It is clear that gWM = l\VM and that g\VQ = IWQ. The category E2 exempli-
fies that g l p ^ U p . On the other hand we have the following.
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3 6 4 A. WEISS, D. THÉRIEN

THEOREM 3.5: For any M-variety
- Since gW<=lW we have gWFçlWP. Let C = G*/P e 1W„ where

Obc = { 1, . . ., n}. By hypothesis H(i9 i)<Mt for some M^eW. Define P(. on
G* by x$ty iff x, yeHQ, k) and either x, y have no prefix in HQ\ i) or
x = xowx1, y=yovyi with ufiv where u(v) is the maximal length segment of
x(y) that is in H(i, i). Then pf is a congruence on G* and G*/P£-<M£.
Moreover p = px H- . . H PnH PF so

G*/p<G*/p1x...xG*/pnxG*/PF .

Since G*/p/-<Ml and G*/$F<M for some MeW by theorem 3. 3, we deduce

This last resuit has conséquences for decidability problem concerning the
wreath product. Given monoids S, T and an M-variety W we want to
détermine if there exists XeW such that S<X°T. It can be shown [12, 10]
that this problem reduces to deciding if a spécifie (constructible) category
belongs to gW. This is decidable whenever gW = lW and membership in W
is decidable. If T is R-trivial, the category in question is of the form G*/P
for some G* in P. By theorem 3.5, the problem above can thus be solved
whenever W has a decidable membership problem.

4. g A ^ l A ,

Let Ax be the M-variety of idempotent monoids i. e. MeA1 iff m = m2 for
ail me M. We will show that gA1 = IA1. The proof given hère is typical of
similar results.

We first need a gênerai fact.

LEMME 4.1: Let W be an M-variety. Let C = G*/$ where ObG* = Obc and
HG* is generaled by A. Then CegW iff there exists a congruence y on the free
monoid A* such that M = A*/yeW and for any x, yeHG+(i,j) xyy implies

— Suppose there exists such y. Define <q>, v|/>: C^M by i<p=l, the
unique object of M, for ail iGObc and [x]p\|/ = {(>]y|xYj>;}. This is indeed a
division so that CegW. Conversely let <<p, \|/>: C-> M be a division for
some MeW. Let A = {al9 . . ., an}\ choose for each i an arbitrary element
mtea{<p. We define a new relational morphism <cp, \|/L >: C^M by
[x]p\|/1 = {m i l. . .mt-J there exists wPx, where w = ah. . .at-fc}. The image of
C by y\f1 is a submonoid MA of M that is generated by A. Also if [x]p and
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VARIETIES OF FINITE CATEGORIES 365

[y]p are coterminal and [x]^l Ol>]p^i is not empty then [x]p\|/H [>]p*|> i s

not empty either so that x P>\ Hence ^ is a division. Q
It is known (see [3, Ch. 9]) that A*/yeA1 iff 7 2 a where a is defined in

the following way. For x e i * Iet Ax = {a\aeA, X = XOÖX1}; if Ax^0 let
xX(xp) be the longest prefix (suffix) of x such that AxX^Ax (AX(t¥

:Ax). The
congruence a is given by xay iff Ax = Ay and, if Ax^0, x = (xX)
au = vb{x, xp), y — (yX)aw = zb(yp) with (xX)<x(yX), (xp)oc(yp). Note that
in particular x and j have the same initial and terminal letter.

THEOREM 4.2: gAj=lA,.

— It suffices to show that 1AX ̂ g A r On the f ree category G* let p be the
smallest congruence satisfying x£x2 for all xeHG*{U 0- Thus C = G*/SelA1

iff 5 ̂  p. In view of lemma 4.1 and the canonical property of a defined
above, it is sufficient to show that xay implies x5y for any x, yeHG*(i>j).

If I Ax I ̂  1 the result is trivial We proceed by induction on | Ax |. We first
show that xauv implies x Puv' for some v\ Again if | Au|^ 1 the claim follows
immediately. Otherwise let u0 be the longest common prefix of x and u: if
M0 = Mwe are done. If not, let u = uoauu x — uoxo. If u0 does not contain the
letter a then xo = waz and uoauow: this follows from the définition of oc.
Since | ^ u o | < | ^ u | we deduce uopuow: thus xpwoaz. If u0 does contain the
letter a then u0 = waz and x = wazx0 p wazazx0 = u0 azx0. In both cases we
have x p x' for some x' having a longer common prefix with u. Since P ^ a w e
can iterate the argument until this common prefix coincides with w. By
symmetry we also have x a uv implies x P u' v for some u'. Now going back
to the proof of the main result let xay. The statement proved above can be
used to deduce y$xz for some 2: hence we also have xotxz. Using the
symmetrie version of the intermediate result we get x P wz for some w. Then
x P wzz P xz, so that x p y, •

5. CONCLUSION

The theory of varieties of Eilenberg and Schüzenberger, relating algebraic
properties of monoids and combinatorial properties of languages, has helped
tremendously to organize the body of knowledge that concerns finite-state
machines.

What is emerging at this point is simply a refinement of that theory. By
relaxing the condition that a machine should have a free monoid as its input
space, one is led to introducé catégories as the right model for àutomata.
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3 6 6 A. WEISS, D. THÉRIEN

The notion of variety is easily generalized in a way that the relationship with
languages is preserved.

The advantages are two-fold. First, as we have outlined in the introduction,
partial multiplication better represents what is happening in a situation where
a machine is decomposed into simpler components. Second, there are "more"
C-varieties than M-varieties and the generalization from monoids to catégo-
ries appears to allow enough freedom to express conveniently phenomena
that are impossible to describe using exclusively the old framework. For
example several results abour wreath product décompositions have been
obtained in recent years by using the categorical approach. Also the C-variety
11 provides a missing link in the theory of maximal proper epimorphisms of
Rhodes [7, 8]. We believe that catégories could be helpful in studying some
important decidability problems like those about the dot-depth hierarchy [1]
or the group-complexity hierarchy [3, Ch. 12].
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