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REDUCTION SEMANTICS
FOR RATIONAL SCHEMES (*)

by K. INDERMARK (*)

Communicated by J.-E. PIN

Abstract. — For rational schemes, built up inductively by combinators for projection, composi-
tion, and resolution, we introducé réduction semantics and give an algebraic proof of their équiva-
lence to denotational semantics.

Résumé. — Pour des schémas rationnels, construits par récurrence par combinaison de projec-
tions, compositions, et résolutions, nous introduisons la sémantique par réduction et nous donnons
une preuve algébrique de son équivalence avec la sémantique dénotationnelle.

INTRODUCTION

Rational schemes form a very simple class of abstract recursive définitions
insofar as the recursion involved can already be represented by regular
équations with parameters. Following [8], these schemes are built up inducti-
vely from a set Q of opération symbols together with combinators P(- for
projections, C for composition, and Ut for resolution of regular équations.
Interpreting Q by a complete Q-algebra se, a rational scheme defines a
rational opération on J / .

The usefulness of such a rational calculus has already been recognized in
[2, 12, 13, 14], because it describes the control structure of many recursively
defîned objects in computer science. E. g., Kleene's theorem for finite auto-
mata and Engeler's block-normal-form resuit for flowcharts can be under-
stood as instances of a gênerai normal-form theorem for rational schemes, [7].
For this and many other applications it is essential to allow the explicit use
of composition and nested multiple recursion.

(*) Received in December 1982, revised in April 1983.
(*) Lehrstuhl fur Infonnatik II, RWTH Aachen, Büchel 29-31, 5100 Aachen, W-Gennany.



210 K. INDERMARK

However, application of rational schemes is not restricted to "regular
recursion". "Context-free recursion" [11] and even recursion on higher functio-
nal domains [3, 4] can be treated appropriately taking derived algebras as
interprétations. In f act, we have shown in[9] how to obtain Damm's recursion
hierarchy theorem using this technique.

The last observation demonstrates that the rational calculus can well be
viewed as an alternative to the typed ^-calculus with fixed-point operators.
First, our calculus is based on typed combinators without using variables,
second, and in contrast to [6], higher type recursion is split up into regular
recursion and dérivation.

The purpose of this paper is to give a proper operational semantics to
rational schemes and prove its équivalence to denotational semantics. We
prefer the notion of réduction semantics because the order of réduction steps
will not be specified. It might be an interesting conséquence of this to consider
the rational calculus in the context of functional programming. Our réduction
semantics would directly lead to implementation on réduction machines.

The paper is organized as follows: We start by recalling abstract syntax
and denotational semantics of rational schemes as introduced in [8]. In
particular, we are using algebras without rank, i. e., an opération has an
arbitrary number of arguments. Thereby, we avoid many-sorted algebras in
the treatment of higher-type recursion. Next, we introducé réduction rules
on computation terms and define a corresponding réduction relation by
means of structural induction. This purely algebraic définition of the réduction
relation turns out to be very useful because parallel réductions can be
performed within one step. As a conséquence, we get an easy proof of a
standardization theorem. Then, we apply this result to show that the values
reducible from a computation term form a directed set. This leads in a natural
way to réduction semantics.

1. DENOTATIONAL SEMANTICS OF RATIONAL SCHEMES

In this section we briefly recall abstract syntax and denotational semantics
of rational schemes. They were introduced in [8] where one can also find
more motivation for our choice of rank-free algebras.

Let i b e a set.
Then Ops (A): = {f \ f : A*-+A) is the set of opérations on A.

Let Q be a set of opérations symbols (without arities).
Then cp: Q-»OpsQ4) détermines an Q-algebra:

sé\ = < A; <p > e Algn.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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For any set X there exists:

J ^ (X) G Algn , freely generated by X

Hence, any assignment a: X^A with se' = (A\ cp>eAlgn extends uniquely

to a homomorphism:

S: ^n(X)-*s#.

If X=Ç), we simply write ^a instead of Ĵ nCÇ)) and dénote the unique
homomorphism by h^.

The same situation arises when starting from a complete partially ordered
set A — complete with respect to directed subsets —and continuous opérations
on A, The corresponding objects are denoted by:

A1&, J ^ Q O and h^.

For an arbitrary complete algebra se e Alg^ there exists a natural class of

opérations, so-called rational opérations, which can be obtained uniformly
from the class of projections by means of left-composition with base opéra-
tions of se, composition and resolution. The essential construction is that of
resolution: it corresponds to the least solution of a system of regular équations
with parameters.

Syntax of rational Q-schemes

We define the set R(Q) of rational symbols over Q by

jR(Q): = {F | FeQ} U {Pt \ i > 0} U {C} U {Ut \ i>0}

and the algebra Ratfi of rational Q-schemes by

In contrast to our previous treatment we distinguish F from F because F'
will dénote left-composition with the base opération denoted by F. Moreover,
instead of only one resolution symbol U we take Ut in order to consider the
i-th équation as the defining équation. This modification becomes necessary
for a proper réduction semantics as we shall see below.

Without choosing a particular représentation of the initial algebra ^"R (n),
we get an inductive description of its carrier RatQ: the set Ratn of rational

vol. 18, n°3, 1984
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Q-schemes is the least K such that:

(1) GeR(Q)^G(e)eK,

(2) Su ...9SmeK, n £ l , G e R(Q)^G (Sx . . . Sn)e K

Here, G(S1...Sn) is meant to be the free application of <p^(G) to the
arguments Sl9 . . . , Sn in the initial algebra ^Rim, and the special case G (e) e
Ratn is short for <p̂  (G) (e) the free application to the empty argument list.

Remember that an opération can have an arbitrary number of arguments.
See [8] for more details.

Semantics of rational Q-schemes

Let Q be interpreted by sé = < A; cp > e Alg^.

For the semantics of rational Q-schemes in sé it suffices to construct an
R (Q)-algebra because of the initiality of Ratn in Alg^(n). Therefore, wedefine

the rational algebra:

of <srf by

9 (F) (A . . Jr) (a): = 9 (F) ( k (a). . . fr

9 (C) (/o . • • X) (a): =/o (/i (a) • • • fr (a)),

/i.-./r)(fl):=

where / : Ar

Here, ft: A* ^> A, aeA*, re N, 1 A is the least element of A, projf\ A* ~* A

is defined by proj,(ax. . . ar): =if 1 ̂  i ̂  r then at else l x and fix takes the

least fixed-point of a continuous transformation.

This définition shows that F is taken as left-composition with <p (F), p. as
the constant functional that yields projf, C as composition and R£ as the ï-th

R.A.I.R.O. Informatique théorique/Theoretical Informaties



REDUCTION SEMANTICS 213

component of the solution of the following system of regular équations with
parameters:

i =fx (*i • • • xr à),

Note that according to our convention Ops(A) contains only continuous

opérations because we started from a cpo A, and that continuity is preserved
under each functional q>(G) with GeR(Q).

The semantics of rational Q-schemes is now given by the initial
R (Q)-homomorphism:

•hRiJg): R a t n ^ K ( ^ ) ,

and we dénote the semantics of a rational scheme S in si by

2. COMPUTATION TERMS AND REDUCTIONS

We just explained the meaning of a rational scheme S e Ratn interpreted

by si eAlgQ as a certain opération of si, also called rational opération. lts

application to a value aeA* produces generally an infinité object:

insofar as fixed-points are involved. More precisely, [S]^(a) can be unders-
tood as the homomorphic image of an infinité rational tree, [8],

Here, we shall present a method for Computing the value |[S]^(fl) by
means of finite approximations. For this purpose, we generalize the réduction
semantics given in [10, 11], also see [5], for rational and recursive schemes in
equational normal form using schematic grammars.

Given an interprétation j /eAlg^ of Q we define the set of computation

terms of sé as:

i. e., as the carrier of the (Q U Ratft)-algebra freely generated by A.

vol. 18, n° 3, 1984



214 K. INDERMARK

Though we speak of terms, again we do not use any particular représenta-
tion of Compn(tg/)? only its unique génération from A by free application of

(fV(F) for FeQ and of <p^(S) for SeRatn.

Hence, a computation term £e^:=Comp n ( j / ) is:

either atomic: EeA,

or an Q-term : E = F(E1. . . £r),

or a Ratn-term : £ = S (£x . . . £P),

where FeQ, SeRatQ>

Now, the denotational semantics of rational schemes extends canonically
to computation terms. For £ e ^ w e define:

m* e A

by induction on the algebraic structure of <&:

[F (£x . . . £r)]rf: = q> (F) ( [ f i j ^ . . . pï

[S ( £ , . . . £r)]rf:

For their réduction semantics we first introducé a set of réduction rules which
allow the élimination of rational symbols.

Let FeQ, S = St. . .S seRat£, £ = £ t . . .Ere<ë* and a6y4*. Then we take

the following rules:

F(a) -» 9 (f) (a),

F (Si . . . SJ (£) - F (Si ( £ ) . . . Ss (£)),
P, (S) (£) ^ if i ^ r then £, else JL̂ ,

C (e) (£) - 1 ^ ,

C (Sx . . . Ss) (£) ^ St (S2 ( £ ) . . . Ss (£)) (s ^ 1),

R,(S) ( £ ) - ! „ ,
R( (S) (£) -• S, (Ri (S) ( £ ) . . . Rs (S) (£) £) (i ^ s).

The essential rules are of course the last two because they will describe the
fixed-point approximations according to Kleene's fixed-point Theorem.

These réduction rules détermine a réduction relation:

R.A.I.R.O. Informatique théorique/Theoretical Informaties



REDUCTION SEMANTICS 215

namely the least precongruence containing these rules and the identity relation
on #, i.e.:

(1) If Et -> E2 is a réduction rule, then Ex \- E2.
(2) For each E e V we have £ h E.
(3) If E, h E'h 1 ̂  i g r, FeQ, SeRatQ,

. . .£,) h

. . .£ r) h

(4) There are no other réduction steps.
Note that we gave a purely algebraic définition of the réduction relation,

not a syntactic one using "contexts". We shall see that this kind of réduction
relation facilitâtes the proof of the standardization theorem as it allows
parallel réductions in one step. This technique has already been used by Tait
and Martin-Löf for proving the Church-Rosser theorem of the X-calculus,
see [1].

3. STANDARDIZATION

Before we proceed to define réduction semantics, we simplify our task
insofar as we restrict ourselves to left-reductions.

A a special case of h we get the left-reduction relation V ç c€1\

(1) If Ex -> E2 is a réduction rule, then Et \- E2.

(2) If F(aEiE)e^ with Fefi, aeA*, Ee<£*9 and Ex h E2, then

YF{aE2E).

Standardization theorem

If £ e Compfi (̂ 4) and a e A, then Eb a implies E \- a.

Proof by induction on the réduction length n.
o o

(1) n = 0: EVa implies E = a and E\-a.

n *

(2) n ~* n+ 1 : By induction hypothesis, E\- a implies E\- a for all £ e ^ and

aeA,
vol. 18,n°3, 1984
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n+1
Now, let E Y a. We proceed by case analysis on E e <€.

w + l o

(a) E = af Y a: Necessarily, a' = a and E Y a.

71+1

(6) £ = F(£ 1 . . .£r) (- a: There must be au . . ., areA such that
n n

F(EX. . . Er) Y F ^ . . . ar) h a. Therefore we have Et \- at and by induction Et

h av We compose these réductions to a left-reduction séquence:

F (E, ...Er)\iF(a1E1...Er)\iF(a1a2Es...Er)...\-iF(a1... ar) V a.

( c l ) E = F'(S1...Ss)(E1...Er)
nVa:

This réduction séquence must be of the form:

F (S,... Ss) (E, . . . Er) Y F (Sx ... Ss) {E\ . . . E'r)

Y F (S, ( £ ; . . . £ ; ) . . . Ss ( £ ; . . . £ ; » Va.
p

It follows that E( Y E[. Now, we can change the order of réduction without
increasing the number of steps ! This is a conséquence of the algebraic définition
of Y that allows parallel substitutions:

F (St . . . Ss) {Ex... Er) Y F (S, ( £ , . . . £ , ) . . . Ss (Ex . . . £ r))

Y FiS^E'! . . . E'r). . . SS(E[ . . . E'r))Y a.

The assertion then follows f rom the induction hypothesis because p-Yq — n.

(c2) E = Pi(S1...Ss)(E1...Er)
nY1a:

Case 1: i > r.

Then we have a = 1 A and Pi(S1. . . S s)(£x . . . £r) I- 1A,

Case 2: 1 ^ i ^ r5

. . . Ss) (Et... Er) Y Pt (St . . . Ss)

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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The assertion follows as in case (c 1).
nï(c3) E = C(S1...Ss)(El...Er)ï a:

Case 1: s = 0 is analogous to (c2) case 1.
Case 2: s ^ 1.

Again, we may change the order of réduction steps without increasing the
réduction length and conclude the result from the induction hypothesis.

(c4) E=Ui(S1...

Case 1: E Y Rt (St. . . Ss) (E[ ...E'r)Y±A as in (c 2) case 1.

Case 2: E Y Ut (Sx. . . Ss) (E'x ...E'r)

Since all E • occur in parallel we can apply the same technique as above.

4. THE DIRECTED VALUE SET OF A COMPILATION TERM

Generally, there are many ways to reduce a computation term EeW. So,
we are led to define the value set of E by:

yal(E): = {ae,4 | E Y a}.

It was shown in [10, 11] that schematic languages associated with rational
and recursive program schemes in equational normal form are directed sets.
Here, we prove an analogous result.

THÉORÈME : For each Ee^ val (E) is a directed subset of A.

Proof: From the standardization theorem we know that:

EYa}.

vol. 18, n° 3, 1984



218 K. INDERMARK

Hence, we may prove the assertion by induction on the number of left-
reduction steps:

V n e

V£ e <g9 \fnl9 n2 e N, Vals a2 e A:

/îf ^ ft, ü r öf, I— 1, L
l (*)

\ 3 a e i : £ h a and au a2 S a-

Proof of (*) by induction on n:

(1) n = 0: El-a^ implies a1=a2 = :a.

(2) n -• ïi+ 1: We assume that (*) holds for n.

Let £ 1- ax and E \- a2 such that max{nls n 2}=n+l . Now, we proceed by

case analysis on E.

(a) £ = a'ev4: This is impossible since a'Ya-^ implies nf = 0 in contrast to

the assumption that max{n1( n 2}=n+l .
(b) E = F(Ex...Er):

«i PI pr

i . . . Er) V ax implies Ex h bl9 . . ., Er h Z?r and £(&!. . . br) h ax with

Analogously, we get E1 V cu ..., Er h cr and F(cx. . . cr) h a2 with ^f ^ n.

By induction hypothesis, there are d{ e N such that:

E( h d,- and dt for 1 ^ i ^ r.

Since Ö! = q> (F) (bx . . . br), a2 = (p(F)(c1. . . cr) and <p (F) monotonie, the asser-
tion follows with:

a: = <p (/O (<*!•-. dr).

(c) E = S ( E 1 . . . E P ) :

In all cases of S, except one, the first left-reduction step is uniquely
determined so that the induction argument applies directly. The exception is

R.A.I.R.O. Informatique theorique/Theoretical Informaties
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given by S = Ui(S1. . . Ss) with 1 ̂  i ^ 5 because in that case we have two
possible left-reduction steps. But, since one of them dérives ±Ai the assertion
trivially holds.

5. REDUCTION SEMANTICS OF RATIONAL SCHEMES

The previous resuit enables us to define the réduction semantics of a
computation term E e <$ by

Remember that A is complete with respect to directed subsets. From the
définition we dérive réduction semantics for a rational scheme S e Ratn

interpreted by se e Algn as f ollows:

Our main resuit states that this operational type of semantics coincides with
denotational semantics.

THEOREM: For each EE<£ we have

Proof:

(1) Ï
Since each réduction rule Ex -+ E2 satisfies {E^ ^ [ £ 2 ] ^ ^ foliows from

the monotonicity of cp(F) and of the rational opérations that Et h E2 implies
[EiJj* ^ [^2]^ f° r a^l computation terms Eu E2. Hence,

*
E t- a implies a ^ [Ej^.

(2) [£]„ ^ [£K d

This will be shown by induction on the structure of E.

(a) E = aeA,

la}* = a and [aR d = U val (a) = LJ {a} = a

(P) E = F(El . . . £ , ) and {E,]* £ [Etf* for 1 ^ i g r:

vol. 18, n° 3, 1984



220 K.. INDERMARK

by induction hypothesis

= U{cp(F)(a1...ar)|a,.eval(£i)}

by continuity of (p (F)

(c) E = S (E,. . . Er) a n d [ £ , ] „ =g [ £ , K d for l^i
By induc t ion o n the s t ruc ture of S we prove ( • ) :

f [£(]^g[£,.]'id for 1
1[S (E,. . . E,)}* g [S (£t

(cl) S s {F (e), Pj(e), C(e), Uj(e) \
These four cases are easily checked:

[ F (e) (E,... Er)Y?f U va] ( F (e) (E,... E,)) = LJ {cp (F) (e)},

[P, (e) ( £ ! . . . £ r ) L ^ i f 1 é j è r then [ £ J ^ else 1^,

IPJ (e) (£x . . . £P)Kd = if 1 è j è r then U val (£^) else 1^,

and we get (*) by induction.

[C (e) (E,... £ r ) ]^ = ±A = U val (C (e) (E,... £r))

The same conclusion holds for S = Uj (e).
(c2) S = F (S1 . . . Ss) and (*) holds for all St.

Now, let [ £ J ^ ^ [£ ;K
d for 1 ̂  i è r.

[ F (Si . . . Ss) (£x . . . £ r ) ]^ = cp (F) ([S1 (E,... E,)}* . . . [Ss (E, . . . £,)]„),
by induction ^ q> (F) ([Sx (£ t .. . £r)]£d . . . [S. (£j . . . £r)Kd),
as in case (ft) = lF(S, (E, . . . ET). . . Ss (E,. .. £r))]^d, \
by standardization = [ F (Sx . . . Ss) (E1 . . . £ r)]^d.

(c3) S = Pj(S1. . .Ss) has the same proof as S = P;(e). \
(c4) S = C (Sj. . . Ss), s ^ 1, and (•) holds for all St.
Again, let [E,]^ ̂  [ £ j 2 d for 1 ̂  i g r: i

[C (Sj. . . S5) ( £ ! . . . £P)]^ = [S1 (S2 (£ t . . . £r) . . . Ss (E,... £,))]„.

By induction we get: \

lSt(E1...E,)]„£lSt(E1...Er)Y? where 2^i^

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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and anew by induction:

^ IS, (S2 (£x . . . £ r) . . . Ss ( £ , . . . Er))ff

by standardization = [C (S± . . . 5S) (Ej . . . £ r )Ë d

(c5) S^UjiSi. . .Ss), 5 ^ 1 , and (*) holds for all St.

If j > s, the proof goes as in the case 5 — 0.
So, let 1 Sj ^ s .
Moreover, let [ £ j ^ ^ [ £ j ^ d for 1 ̂  i ^ r.

= projf-(fix(/))

where:

ƒ: ^ s - ^ ^ s

. . . [SJ^ (6 [£J^ . . . [£r]

Here? we have reached the essential point of this équivalence proof because
Tarski's fixed-point theorem allows an operational characterization of fix(/):

In order to describe the approximations f"(-is
A) we consider the Kleene-

sequences of computation terms for Su . . . , Ss and Eu . . . , Er For each
ie{l, . . ., s} we define K?, IC/, . . . , e«by :

It is now easy to check that:

ƒ" (1S
A) = W ] ^ . . . K ] U for all n e IM.

By successive applications of the induction assumption if followS that:

for all neN and 1 ^ i S s

vol, 18, n°3, 1984
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and therefore:

= L J { L J y ^ |

£ U val (Uj ( S t . . . S,) ( ^

The last inequality follows from the fact that:

*R,. (S1 . . . Ss) (£x . . . £r) Kj for ail ne N.

Now, since (*) implies (c), this complètes the proof of the équivalence
theorem.

As an immédiate conséquence this resuit also holds for rational schemes
because:

and
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