RAIRO
INFORMATIQUE THEORIQUE

PIOTR BAK
A fast method of deadlock avoidance

RAIRO - Informatique théorique, tome 18, n° 1 (1984), p. 71-80.
<http://www.numdam.org/item?id=ITA_1984__18_1_71_0>

© AFCET, 1984, tous droits réservés.

L’acces aux archives de la revue « RAIRO - Informatique théorique » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

‘NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1984__18_1_71_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

R.A.LR.O. Informatique théorique/Theoretical Informatics
(vol. 18, n° 1, 1984, p. 71 a 80)

A FAST METHOD OF DEADLOCK AVOIDANCE (*)

by Piotr Bak (%)
Communicated by M. NIvAT

Abstract. — The paper presents a fast deadlock avoidance method for the single resource type
system. Proposed method is similar to the one described in Habermann. It is based on the process
rank modification during resource granting or releasing.

The auxiliary vector construction is simpler than in Habermann. The utilization of this method in
multiple resource type system is also presented.

Résumé. — On présente une méthode rapide pour éviter I'interblocage dans un seul type de
ressources. Cette méthode ressemble a celle présentée par Habermann. Elle est basée sur l'idée de
modifier le rang d’un processus quand les ressources sont allouées ou sont rendues. La méthode de
construction des vecteurs auxiliaires est plus simple que celle de Habermann. On propose aussi
Putilisation de cette méthode pour les systémes d types de ressources multiples.

1. INTRODUCTION

System deadlock avoidance methods are based on constant preservation of
so-called “system safe state” [4,5,2]. After every demand of resources the
special-test is used to decide if the resources may be granted. The banker’s

“algorithm is used but its execution time is proportional to the product of
number of processes and number of resource types. The substantial
computational complexity of this algorithm often limits its utilisation in
practice. In [5] one of the first attempts for its simplification is presented, the
execution time being in this case proportional to the number of resources only.
The method presented in [5] is valid only for single-resource-type system.

The utilization of this results from [5] for multiple-resource-type system is
presented in [1]. In this paper the deadlock prevention method [3] for different
types of resources has been used. '

In a safety test proposed in [5] the “state vector’” must be hold. However its
actualisation is complicated. The paper [5] dosen’t present the complete proof

(*) Received in February 1982.
() Polish Academy of Sciences Complex Control System Dept. Baftycka 5, 44-100 Gliwice,
Poland.

R.A LR.O. Informatique théorique/Theoretical Informatics
0399-0540/84/01 71 10/$ 3.00/ © AFCET-Bordas

72 ' P. BAK
of the proposed condition of system safe state which causes its modifications -
to be difficult. '

In this paper a new metho_d of deadlock avoidance for the single-resource-
type system as well as utilization of this method for multiple-resource-type
system is presented.

2. ASSUMPTIONS AND DEFINITIONS

In the péper we will consider, a system which consists of the finite set of
sequential processes #={P,P,,...,P,}, and the finite set of types of
resources Z={R;, Rz, ...,Rn}.

The processes dynamically demand resources, and all necessary conditions
of deadlock occurence are fulfilled [3].

The resource allocation state is defined similary as in [4] by means of
matrices B, C, D and vector a.

Vector a=[a;] (i=1,2,...,m) describes the number of resources of each
type available in the system (a; —number of R; type resources).

Matrix:
B=[by, by, ...,b)=[b;] (=12mj=1,2 ...,n),

describes claims for the system resources (b;; - maximum number of resources
of type R; possibly allocated to process P).

Matrix:
C=[cls €2, .. "cn]=[cij] (i=l32a . ',m.’jz 1,27 .- "n)o

describes the number of resources allocated to processes at a given moment
of time (c;;-number of resources of type R; allocated to P;). '

Matrix:
D=[d,;,d,, ...,d,]=[d;] (i=1,2,...,m,j=12,...,n),

describes current demands of the processes (d;;-number of resources of types

R; demanded by process P;).

All demands of process P; for resource type R; are satisfed if di;=c;;. The
process demands (d;;—c;;) resources of type R; if d;;>c;;, and whenever if
d;j<c;; process P; declares the realise of (c;;—d;;) resources of type R;.

We will introduce an auxiliary matrix:

Y=B—Ct-=[y1,y2, coorl=lE=12,...,m,j=1,2,..,n),

R.A.L.R.O. Informatique théorique/Theoretical Informatics

A FAST METHOD OF DEADLOCK AVOIDANCE 73

which defines the number of resources that the processes can additionally
request in order to complete. Let y;; represent the “rank™ of process P; in
relation to the type R; resources [5].

In the paper we will consider only the system realizable state [4, 5].
The presentation of the safety test is based on the following definitions:
DerINITION 2.1: We say that system is in its local safe state with regard to

resource type R; when it is possible to compose the processes realization
sequence:

(2.1) PryPry- - -Prom

such that:

(2.2 Vo, bigw<rit Y cirap
ke[1,n)

1<k

where: b;;,u), Cis,q) denote maximal and allocated number of resources of type
R; to the process which occupies k-th place in the sequence, respectively; 7;-
describes how many resources of type R; remain free at a given moment of
time; f; (k) =z denotes that the process P, 2 occupies the k-th place in the
sequence.

DEfFINITION 2.2: We say that the system is in its safe state when it is
possible to compose the processes realization sequence:

2.3 Pray Prigy- - - Py
(2.4 Vo, bpg<Tt+ Y €0y
ke(l, n) 1<k

where: b,), €,q)-vector of maximal demands and vector of allocated number
of resources to the process which occupies k-th place in the sequence,
respectively:
: "
ra
r=

T'm

— describes how many resources of each remain free at the given moment
of time; '

vol. 18, n° 1, 1984

74 P. BAK

— f(k)=z denotes that the process P,e % occupies the k-th places in the
sequence. It is easy to show that the Def. 2.2 is equivalent to safe state
definition presented in [4].

The set of processes 2 is divided into two disjoint subsets:
P=2P,U2P, (21N 2,)=0.
Subset 2, is a set of passive processes for which:

v N v N C,'j=0

Pje.?z ie[l,m]

and £, is a set of active and suspended processes, for which:

v, 3, c.-ﬁéO.

Pie? ie[1,m]

Let u describe cardinality of subset 2,.

3. A SAFETY TEST

We have noticed that the banker’s algorithm may be used as the safety test.
Because of its substantional complexity the simpler methods are being looked
for.

To present the proposed safety test we will prove the following theorem:

THEOREM 3.1: The realizable system state is a local safe state for the R,c #
type of resources if and only if in this state there exists the sequence of all active
and suspended processes:

3.1 PryPray. - - Prwy

which satisfies the following conditions:

(3.2 L Yy SYis@)- - - SYifup
ey

3.3) 2. ¥, bgo—cira<rit Y Cisg
Jell,u) k=1

Proof: First we assume that the system state is a local safe state with regard
to R, type of resources. Thus, there exists at least one local safe sequence of
processes for resource type R;, for example:

(3.9 Py1yPo2y- - - Poiy- - - Pgyn—1) Pyym-

R.A.LR.O. Informatique théorique/Theoretical Informatics

A FAST METHOD OF DEADLOCK AVOIDANCE 75

Pya€P2 SO Ciguy=0.

From the Def. 2.1 it results that the process Py, can by moved at the end
of the above sequence without changing the locations of other processes. In
the same way we move all passive processes at the end of (3.4), so finally we
have:

(3-5) Phi(l)Phi(z)' .. Ph,'(l) Phl_(l+1). . -Phi(u)Ph,-(u+1)' . -Phl,(n)

which satisfies:

(3 . 6) v N C,';,‘.(j) =0.

jelu+1,n]

In order to examine that the state is local safe state for resource type R; we
need to examine only the subset of active and suspended processes. Now we
assume, that the sequence of processes:

(3.7 Pit) Py - - Pra-1) Py Pras 1y Prae - - - Prica
satisfies:
(3.8) 3, Yima+1) ZVinay

le[1,u]

Writing inequalities (2.2) for the elements !/ and (I+ 1) we have:

-1
(3.9) binay—cinay <Ti+ z Cih,(k)
k=1
1
(3.10) bina+1y—Cima+1)<ri+ z Cin,(k)-
’ k=1

Because condition (3.8) is satisfied, the inequalities (3.9) and (3.10) can be
rewritten as below:

-1
(3.11) bing+1)—Cina+1y<ri+ Y Cih,(k),
k=1
-1
(3.12) _ binay—cinay<rit+ Y Ciney + Cingt +1)-
k=1

Therefore processes Py, and Py g+1) in the sequence (3.7) can be swapped
with the locations of the other processes left unchanged. It is further possible

vol. 18, n° 1, 1984

76 P. BAK

to swap all other processes in the sequence (3.7) for which the conditions (3.2)
and (3.3) are satisfied. Finally it is possible to obtain the sequence with
properties (3.2) and (3.3). We can extend this sequence for all system’s
processes by placing the passive processes at the end of sequence (3.7), so that
the system state is safe, from Def. 2.1, with regard to the R; resource type.

THEOREM 3.2: The realizable state is local safe state for the R;€ & resource
type if the inequality:
(3.13) Visq,

is satisfed.
In (3.13) we have denoted:

(3.14) Vi =[vi1, 012, - s Vs - - -, Via,,)»
(3.15) V=Y, Wik

k=j
(3 16) W,'=[W,'1, Wiz, ooy Wijy o v oy wia,-]a

w;j=the number of R; type resources allocated to the process P,eZ with
the rank yy=j—1:

(3.17) o =g, 92, - - - Qijs - + > Qiagy s

_fa—j+1 for j<a,
&= 0 for j>a,

am,,=maax{a1, A2y s @iy ooy Om).
i

Proof: From Def. 2.1 we have that the system state is safe, for R; type of
resource, if there exists the realisation sequence of processes (2. 1) satisfying
(2.2).

We will divide the set 22, =2, with regard to the resource type R;, into
subsets:

AL Ay o LA LAL L LA,

satisfying:
v N y,'j= k —_ 1,

Pje Ay

i.e.: each process P;eA, needs at most (k—1) resources of type R; to
complite.

R.A.I.R.O. Informatique théorique/Theoretical Informatics

A FAST METHOD OF DEADLOCK AVOIDANCE 77

Let as assume that the above subsets are ordered in the following way:

(3.20) Vi, YV, yp<y;

P,y PjeA,

The verification if the system state is local safe state is then possible (by
means of the Theorem 3.1) by subsequent verification of the following
subsets:

(3.21) 3, bijj—cij<ry,
Pje.Al
(.22) kK 3, by—cy<nit Y, cCip
PieAy P,eAk-1
(3.23) D 3, by—cy<nt Y i
PeA, PpeAl_l
where:

Ak”l:Al UAU.. .Ul
A=A UAU...UA-.

We find that the system state is not local safe state, with regard to the
resource number R;, when at least one inequality is not satisfied.

Let all processes in the subsets:
AL A, ... A,
satisfy the above inequalities. Now, we are to test subset A;, so:

(3.24) v N bi,-—ci,-Sr,-+ 2 Cip-

Pjea P,eAl-1
We may write the right part of the inequality (3. 24) in the form:
(3 .25) ri+ Z Cip=0a;— Z Cip+ Z Cip=a;— Z Cips
PPEAI_ 1 P eAdi PoeAl-1 Ppe Afi

where:
Af=AUA 1 U...UA,.

From (3.19) we have that the number of resources needed by process
P;e A, to complete itself equals (I—1). Hence according to (3.24) and (3.25):
(3.26) a— Y, c,=l-1

Ppe A}

vol. 18, n° 1, 1984

78 P. BAK

and:

(3.27) Y. Cp<a—l+1.

Ppe Af"

Notice, that if subset A; is empty and if all previous subsets satisfy
conditions (2.2) then the condition:

(3.28) Y cp<a—L

a,
PpeAfl |

is also satisfied.
From above, we have that condition (3. 27) is also satisfied if:
(3.29) Y cip=0.

Pyea,

If condition (3. 28) is not satisfied we don’t need to verify (3. 27) for resource
type R;e A.

Condition (3.27) should be tested for all subsets A, so from (3.14), (3.15),
(3.16) we have:

(3.30) Vi<q;

where:

(3.31) = Y
PpeAfi

which completes the proof.

ExampLE 3.1: We have the system in which:
P={Py,P;}, #={Ry,...,Ry.. Ry}
and a;=35. Let the elements of matrix B, for resource type R;, equal:
biy =4, bi,=3.
In the initial moment to the:

Ci1= 2’ Ciz= 2’
ie:

yu=3 and yiz=1.

R.A.I.R.O. Informatique théorique/Theoretical Informatics

A FAST METHOD OF DEADLOCK AVOIDANCE 79
Vectors w;, v; and q; are as below:

wi=[0 2 0 1 0]
vi=3 3 1 1 0]

=[5 4 3 2 1]

Hence, the condition

vi<ql

’

is satisfied.
The system state is then the local safe state for resource type R;.

4. ONE AND MANY TYPES OF RESOURCES

In the case of the single-resource-type system (for example Z={R;}) the
condition of the local safe state is the same as of the system safe state.
According to this property we can apply the condition (3.13) from
Theorem 3.2 for testing the system safe state.

This type of system is identical with the system in [5].

The results obtained here are more suitable for use because of the way the
vector w; is being constructed. _

In the case of the multiple type resource system the existence of the local
safe state sequence for any resource type is not sufficient for the existence of
the system safe state [1]. .

The above conditions can be used if the deadlock prevention method is to
be used for individual type of resources.

In order to accomplish it, the following theorem is proved in [1] (Theorem 2).

THEOREM 3.3: The system state is safe if in this state there exist local safe

sequences for every resource type R;(i=1,2,...,m) and the sequence of
processes:

“4.1) PyyPry. - Prony
- satisfying:
(4.2) YrorSYroS- - - SYrm

can be found.

It is easy to show that according the Theorem 3.1 the process sequence (4.1)
may consist only of the passive and active processes.

vol. 18, n° 1, 1984

80 P. BAK

The examination of the system safe state using (3.30) for R; (i=1,2, ...,m)
 and Theorem 3.3, requires the additional constraints to be imposed on the
manner processes receive and release the resources.

These constraints cause that large number of safe states is rejected in the
system.

In [1] it is determined that the miniamal number of rejected states (35%) is
obtained when matrix B is satisfying:
4.3) c=0,
where:

q
Ms
Ma

-
L[}
-

j=1

EI'—

The application of Theorem 3.2 for local safe state examination and
prevention of deadlock occurring within different types of resources is expected
to give good results.

5. CONCLUSIONS

The paper prevents a fast deadlock avoidance method. Its computational
~ complexity is proportional only to the number of resource types and number
of resource unit of each type.

The results obtained here are similar to ones obtained in [5] with simpler
construction of the auxiliary vector.

The utilization of this method for multiple type resources system is also
proposed.

REFERENCES

1. P. Bak, A New Method of Deadlock Avoidance in a Multiprocess Multiple Resource
Type System, Podstawy Sterowania, vol. 11, n° 1, 1981.

2. P. Bak, A Comparative Study of Anti-Deadlock Methods, Podstawy Sterowania,
vol. 7, n° 5, 1976 (in Polish).
3. E. G. CorrmaN and P. J. DeNNING, Operating System Theory, Prentice Hall, 1973.

4. A. N. HABERMANN, Prevention of System Deadlocks, Comm. of ACM, vol. 12, n° 7,
1969.

5. A. N. HaBerMANN, A New Approach to Avoidance of System Deadlock, Revue
Frangaise d’Automatique, Informatique et Recherche Operatlonnelle, n° 9, B3,
197s.

R.A.LR.O. informatique théorique/Theoretical Informatics

