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SOMETHEOREMS
ON GRAPH CONGRUENCES (*)

by Robert KNAST C)

Communicated by J. F. PERROT

Abstract. — We prove a theorem on graph congruences. This theorem is the key step for the
characterization of syntactic semigroups of languages of dot-depth at most one.

Résumé. - Ondémontreun théorème sur les congruences de graphe. Ce théorème est utilisé de façon
cruciale dans la caractérisation des langages de hauteur 1 dans la hiérarchie de Brzozowski.

\. INTRODUCTION

In proving the correspondence between certain varieties of languages and
semigroups, one of the key steps is a theorem on directed graphs, more precisely
on graph congruences. Thefirst theorem of this kind, appeared originally in [1] in
the proof of the correspondence between locally testable languages and locally
idempotent and commutative semigroups, though it was not formulated as a
separate result on graphs. The treatment of this result as a theorem on graph
congruence is due to Eilenberg [2, pp. 222-228].

Let m be an integer, m ^ l and let m~relate any coterminal paths which
traverse the same set of m-tuples of edges. In [4] Simon has proved that the family
of all /-trivial congruences of fini te index corresponds to the family of
congruences covered by m~ for some m, when the underlying graph consists of
one vertex (Simon's result was not formulated as a theorem on graphs). In the
paper, we show that this is not true, when the underlying graph has more vertices
than one. We prove (Theorem 2) that the family of graph congruences covered
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332 R. KNAST

by m ~ for some m, corresponds to the family of all dot (/)-trivial graph
congruences of finite index, where dot^/) is the concaténation closure of the
Green relation^, or equivalently. it is the smallest congruence covered by $.
This result is used in [3] for the characterization of syntactic semigroups of
languages with dot-depth at most one.

2. PRELIMINAIRES

Let A be a non-empty, fmite set, called alphabet. The cardinality of A will be
denoted by \A\. A+ (respectively, A*) is the free semigroup (respectively, free
monoid) generated by A. Eléments of A* are called words. The empty word in
A* is denoted by X (identity of A*). The concaténation of two words x, y e A* is
denoted by xy. The length of a word x is denoted by | x \.

Let ~ be an équivalence relation on A*. For x e A* |XL means the équivalence
class of ~ containing x. An équivalence relation on A* is a congruence iff for
x, yeA*, x ~ y implies uxv~uyv for ail M, veA*.

For terminology related to graphs we follow Eilenberg's monograph [2].

A directed graph G consists of two sets, an alphabet A and the set of vertices V
along with two functions: oc, co : A -> V. Eléments of A are also called edges in
this case.

Two letters (or edges) a, b e A are called consécutive if a co = b a. Let D a A2 be
the set of ail words ab such that a and b are non-consecutive. Then the set of all
paths of G is:

P = A+ -A*DA*.

Functions a, co can be extended to a, a> : P -> V in the following way: if
x~a1a2 . . • anePy then x a ^ û ^ , xco = <2nG>, where au a2, - • ., aneA, n^ 1.
For each vertex veVwe adjoint to P a trivial pathl^; 1VOL=1V<Ù = V.

A path x is called a loop, if xa = xco. We say that two paths x and y are
consécutive if xœ = ya. In this case the concaténation xy is again a path. Two
paths x and y are coterminal, if xoc = ya and xoo = ya).

For any two binary relations ~ x and ~ 2 on P we say that ~ x is greater than
^ 2 ( o r ~ i is covered by ^ 2 ) , wewrite ~ x ̂  ~2,ifforanyx, y e P x ~ 2 y implies

An équivalence relation ~ on P is called a graph congruence if it satisfies the

following conditions:

(i) if x~y, then x and y are coterminal;

(ii) if x~y and w~z, and x, u; are consécutive, then xw~yz.
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SOME THEOREMS ON GRAPH CONGRUENCES 333

In this paper we shall deal only with graph congruences of fmite index. Now we
defme three basic families of graph congruences which we investigate:

(i) Let (al9 a2i . . . , am)£A xA x . . . xA (m-times), m ^ l . We shall write
(au a2, . . . , a m ) e x and say that (au.a2, . . . , a m ) appears i n x , x e i * , if
x = x0a1x1a2x2 . . . amxmfor some x0, x l 5 . . ., xmG^*.

For each integer m, m ^ 1 and for each xeyl* defme:

Instead of xx we simply write x. Now, we can defme a graph congruence m

as follows: for x, yeP.

xm~y iff x and y are coterminal and xim = yxm. By convention we set
UTm = 0 for any vertex v, ve V. It is easily verified t h a t m ^ is a graph
congruence of fmite index on P.

(ii) For any n, n ^ 1, let us defme a binary relation n — o n P , in the following
way: for x, yeP:

xn~ y iff x = xfxxx2 . . . xnx" and y ^ x ' ^ . ^ . . . ynx"9

for some x l s . . ., xn, yl9 . . . , y„ such that x^x^y^x, z, y = l , 2, . . ., n, and
xx x2 . . . x„, y1 y2 • . . yn are coterminal paths.

Definen = to be the reflexive and transitive closure of n —.

Equivalently, „= is the smallest graph congruence on P satisfying the
condition: x 1 x 2 . . . x „ „ = yx y2 . . . yn whenever x^x^y^x, i9j=l9 2, . . . , » .

(iii) For any n, w^ 1, let us define a binary relation „ ^ on P as follows:

for x, y e P , x w ^ y iff:

x —x'x : x2 . . . xnu1 u2 . . . unx"',

y = x f y i y 2 • • .yttwiW2 • • • ^ « ^ " ^

for some:

Xl9X2, • - - , X „ , M l s M 2 , • • • , MBS y l 5 y 2 ? - • • , J>„> ">1> W 2 > • • • > ^ n '

s u c h t h a t :

x ^ x ^ j ^ x , uix = WjX f o r 2,7 = 1 , 2 , . . . , n

a n d :

x1x2.. . xnu1u2,.,un and yx y2 .. ,ynwxw2 . . . wn

are coterminal paths.

vol. 17, n°4, 1983



334 R . KNAST

Defme n~ to be the reflexive and transitive closure of „ « .

Equivalently, „ ^ is the smallest graph congruence on P satisfying the

condi t ion: xx x2 . . . xnu1u2 .-...«„ „ - J i h ••• ^ ^ 1 ^ 2 ••• w„, whenever

x^ T = yj T and M£ T = WJ T för z', j= 1, 2, . . . , n.

N O T A T I O N : Let Aly A2, . - . , Ah<^A,h^l. Then(^l 1 ; A2, . . . , y l j w ü l dénote

the set of &-tuples:

(a\9 a \ , v ., <£{ya\, a \ , . . ., 4 % . . . . , « i , Ö J , .. .., 4 " )

such that:

If Ax =A2= . .. = Ah we dénote this set by (A\). By (Au A2i . . . , Ah)ex for
x e i * , we mean that there is at least one &-tuplefrom the set 04^ A2, . . . , Ah)
which appears in x.

Let ~ be any graph congruence on P. We adapt here Green relation ^ for
graph congruences. For x, yeP:
x / y iff there are paths z ls z2, z3 and z4 such that Z J X Z ^ J ; and z3j;z4~x.

However, we will also need the concaténation closure of ƒ, denoted by
dot^Z), and defmed as follows: for x9yeP:
x dot(^/)y iff for some n, n^il, x=xx x2 . . . xn, y = y1 y2 . . . yn and xi€f yt for
z = l, 2, . . . , «.

We will say that a graph congruence ~ on P is ƒ (or dot C/))-trivial if for any
coterminal paths x / j ; (or x dot{#)y, respectively) implies x^y.

3. RESULTS

The aim of this paper is to show that the family of ,ƒ-trivial graph congruence
does not correspond to thè family of graph congruences covered by the graph
congruencem~ for some m ^ l , when the number of vertices of the underlying
graph is greater than 1. In opposite, Simon [4] has proved thàt this is the case, if
the underlying graph has exactly one vertex. The following example is suggested
by our results. Let K={1,2}, A = {a, b, c, d) and àa = coi = b(ù = d(o=^l,
a(ü^c(ö = ba = da = 2. Defme the congruence ~ by its congruence classes:

{ 12 }, a(ba)*, (ab) + Aab)+ c(dc)*9 (ab)+ (cd)\ b(ab)*9

ba)+, bc(dc)*, b(cd)\ c{dc)*, (cd) +
 9 d(cd)*9 (dc) +
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SOME THEOREMS ON GRAPH CONGRUENCES 335

and four classes containing all other paths, according to the coterminality.

This congruence is ,ƒ-trivial, but (ab)+ (cd)+ / (ab)+ ad(cd)+. Thus for any m
we have ~ <£ m ~ . Of course, if we consider that vertices 1 and 2 represent the
same vertex, then our congruence comes to be not ^/-trivial. In fact, we have
a (ba)* f (ab)+, however, in the case of two vertices 1 and 2, these classes are not
coterminal.

THEOREM 1: For any graph congruence of fini te index on P the following are

equivalent:

(a) ~ is J'-trivial;

(b) there exists an integer n, « ^ 1, such that for all loops u, v about the same
vertex:

u(vu)n~(vu)n~(vu)nv;

(c) there exists an integer m, ra^ 1, such that ~ < m= .

THEOREM 2: For any graph congruence of fini te index on P the following are
equivalent:

(a) ~ is dot (f y trivial;
(b) there exists an integer n, n^l, such that for all loops ux u2 and vx v2 about

the same vertex, where paths u1 and v1 are coterminal:

(ux u2)
n
 Ul v2(v1 v2)"~(ux u2)

n(v1 v2)
n;

(c) there exists an integer n, n^l, such that ~ <n — >'

(d) there exists an integer m, m ^ l , such that ~ < m ~ .

4. PROOF OF THEOREM 1

(a)=>(c): Let ^ be a ^/-trivial congruence of finite index onP . From the
définition of congruence m = it follows that it is sufTicient to show that
x x x 2 . . . x m ~ y x y2• . . . y m w h e n e v e r x 1 x 2 . . . x m a n d y 1 y 2 . . . y m a r e c o t e r m i -

nal, and XiX^yjX (i,j=l, 2, . . . , m) for some m. Since ^ is ,ƒ-trivial, it is
sufficient to show that xtx2 ... xmf yx y2 ... ym whenever xtx = yjX for
some m. We prove this by the following:

LEMMA 3: Let ~ be a f-trivial congruence of finite index on P. Then for m ^
(index '~ +1):

whenever xix = yjxfor i,j~ 1, 2, .. ., ra.

vol. 17, n°4, 1983



336 R. KNAST

Proof: We may assume that m = 2(index ~ +1). Since xt x = y7- t for any 2 and j ,
thenforany&,k=l, 2, .. ., m/2 we maywritex2k= x2fcx2'fe for x2k such that all
pathsx1x2 . .. x2k_1x'2k(k=li 2, .. ., m/2)arecoterminal. By thechoiceof m,
there exist kt and k2, 1 ̂ &i <k2^m/2 such that:

• • ' *2fc 1 - l ^ i ~ * 1 X2 • • * X 2 fc 2 - 1 *2fc2-

We claim that for any path z such that zoc = (x1x2 . . . x2k2_lx^ki)(ù and
c x . x we have:

(1) xx x2 . . . x^^ x^,/x1 x

We apply the induction on the length of z. If | z | = 0, (1) follows by (0). Let z = wr,
|u>|^0 and rextx. Now, k2>kx implies that:

x1x1x2

for some u,veP such that xxx2 . . . x2A2_1x2^2 = x1x2 . . . x7ki_lx
/
2kiurv.

Evidently, paths xt x2 . . . xlk^l x^2 w and xx x2 .. . x2k^_l x^i u are coterminaL
By the induction assumption:

x±x2 . . . X2k2~\ x^2 w J? xx x2 . . . x

Hence:

X1X2 . . . X2ki_i X^2 W / X 1 X 2 . . . -̂ 2

Since ^ is a ̂ /-trivial graph congruence, we have:

x 1 x 2 . . . x U 2 - 1 x ^ i ü r ^ X j x 2 . . . x 2 f c i i

Consequently, by (0):

X l X 2 - • • X2&2-1
 X2k2 U)rcfx1X2 . . . X U l - l X2fc!-

Thus the claim holds.

By this claim xx x2 .. . ̂ - ï ^ ^ ^ i ^ • • • xm- Since xix=yj%,
we can find u, veP such that xm = wu and u00 = yt a. Hence by
the claim, x 1 x 2 . . . xm-iMJi-y2 • • • J m / ^ i ^ - - - xm- B v symmetry,
J1J2 - * . Jm-i "1*1*2 • • • * m / J i y 2 • • • )>m for some Mt such that .ƒ„ = «!!;!
and u1(o = x1 a. Thus JCX x2 . .. xm/y1y2 . .. ym. D

(c) =>(é): Congruence m = satisfies (è) for « = m. Hence, also ^ satisfies (b).

(b) =>(«): Let x^/ j ; and let x, y be coterminal paths. By the définition
x ~z1yz2 and y ~ z3 xz4 for some loops zl9 z3 about the same vertex and for some

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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loops z2, z4 about the same vertex. Since ~ is a graph congruence, then
x~(z1z3)

nx(z4z2)
n. Consequently, (b) implies x~z3xz4~.y. G

5. PROOF OF THEOREM 2

(a) => (c) : Let ~ be a dot(/)-trivial congruence offmite index on P. From the
définition of congruence „ ~ it follows that it is sufficient to show that there is
n, n—^1 such that:

x t x 2 . . . x n u x u 2 . . . u n ~ y 1 y 2 ^ . y n w 1 w 2 . . . « > „ ,

whenever x1x2 .. . xnu1 u2 . . . un and yx y2 ... ynw1 w2 - •. wn are coterminal
paths and xiv=yjx, utx^w^x (ij =1,2, . . . , n). Since ~ is dot C/)-trivial, it
follows that ~ is also ^/-trivial. By Lemma 1 for n ^ 2 (index —\-l)
x1x2...xnfyly2. ,.yn and ux u2 . . . un/w1 w2 . . . w„. Hence, by the

définition of dot (/)-triviality:

x x x 2 . . . x n u 1 u 2 . . . u n ~ y 1 y 2 . . . . y n w 1 w 2 . . . w „ . •

(c) => (ÖO : We will prove that for each n there exists an integer m, m^ 1, such
that n~ <m~. We claim that it is sufficient to set:

where fc = | A |. The proof is by induction on k.

Then for m = m(n, I) = n2,x m~ y implies | x |, \y\^n2 orx=y. Consequently,
xtt-.y-

General induction assumption

If \A\=k=l, „ ^ < m - for m = m(n9k).
Now, \Qt\A\=k+l,k^l, and let x m ~ y for m = m (n, k +1 ). For x we defme a

unique factorization of x as follows: x = xxx2 . . . xpxp+li where for
f=l, 2, . . .,p, p = 0, xt is the shortest prefix of xfxi + 1 . . . x p x p + 1 such that
xix=/4s andxp + 1 x^^- If/?^n5 then m = m(n, k+l)>n(k+i) implies that the
similar factorization of y, namely yx y2 .. ..j;r)>r+1, must be such that r^n.
Hence, by the définition, xn~ y.

Assumep<n. Thenm = m(n, k+l)>n(k+l) implies that r=p. Let us defme
k+x

m(n, k+l,p) = m(n, k)+p.n. £ /, Evidently,m(«, k+l) = m(n, fc+1, n). We
i = l

vol. 17, n° 4, 1983



338 R. KNAST

prove that if the above factorizations of x and y are xxx2 ... xpxp + 1 and
^1^2 • • - yPyP+i respectively, 0^p<n, then for m=^m(n, k+l,p)xm~ y
implies x n~ y. We apply the induction on p.

It follows that xx = yx <^A. Since m~m(n, k+1, 0) = m(n, k)9 then by the
gênerai induction assumption x m ~ y implies x n^ y.

Induction assumption for p

If x = x1x2 . . . x p x p + 1 and y = y±y2 • • -ypyp+i are factorizations as above
for some/?, 0^p<n — 1 then for m = m(n, k+1,p)xm~ y impliesx n^ y.

Let r=p + l and let x = x±x2 . .. xrxr+1 and y — y1y2 • • • yryr+i be the
factorization as above. Assume xm~ y for m = m(n, &+1, r).

Consider x rx r + 1 . Let Û be the last letter of xr. One can write xrxr+l =x" x\_
where x' is the shortest suffix of xrxr+1 such that x' x = A. Let b be the first letter
of x'. There are two cases which we investigate separately:

(1) |x r | = |x" | + l i.e. a = b. Then xrxr+1=zat for some z9teA* and
a^zxu tx\

(2) if |xr--|>|jc"| + l, then xrxr+i=zbwat for some z, u;5 ^6^4*, a^è and

(1) In this case, m = m(n, k+l9 r)>(r— 1) (fe+l) + 2 and x m ^ y imply that
yryr + 1=uav for some u,veA* such that a$ux\jvx. Also, by the same
argument UT = ZT£A and n = i ;TJi .

Hence, x = Xj x2 . .. x r_ r za£ and y==y! y2 - - • yr-i
uav- Since a$zx u ïx,

(flu Ö25 . . . , aq)et(<=v, respectively). Hence x m~ y implies t q~ v. Since
q>m(n, k), the by the gênerai induction assumption t n^ v,

Similarly, (au a29 . . . , aq9 a)ex(ey) iff (al9 a2, . . . , aq)ex1x2 . . . x r_ :z
(Ë^I ^2 • • • ̂ r - 1 w ' respectively). Hence, x m ^ j ; implies x : x2 . . . xr_! z
«^ yi^2 • • • yr-i

 u f° r q = m(n,k+l, r)—1. Consequently, by the induction
assumption forp = r—1, we obtain xxx2 . . . xr_xz n~ yx y2 . . . yr_1 u.

Altogether, since „^ is a graph congruence, we have xn^ y.

(2) As in (1), m = m(n,k+l, r)>(r-l) (£+l) + 2 and xm~y imply that
yryr+1=ubsav for some w, j , veA* such that a$(ubs)x and Z>£(saï/)x.

In this part of the proof we shall use certain special factorizatjons defined as
follows: for z e A + let z = zx z2 . . . z, ( ! ̂  1) be a factorization of z such that for
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SOME THEOREMS ON GRAPH CÓNGRUENCES 339

z —1, 2, . . . , /z- is the shortest prefix of ztzi+1 . .. zx such that
zix=(ziz-+1 . . . Z , ) T # 0 . Of course, Z;X=iZ;+1x. Such factorization always
exists and it is unique. For z = À- we assume that / = 0. Now, for z e A + and for an
integer n, « ^ 1 , we defme the left «-factorization of z as follows:

(i) If for some j , zjx~zj+n'ii where j\j+ne{l9 2, . . . , / } , then for the
smallest j with this property we define the left «-factorization as
z1z2 ...zj_1z

1z2 . . .z" + 1 , where zi^zj+i_li zn+1=zj + n... zl9

i = l, 2, . . . , n .
(ii) Otherwise, if such j does not exist, we define the left «-factorization as

zxz2 ... ztz* z2 .. ' . zn + 1, where zf = A-i.e. Z'T = 0 for z==l, 2, . . . , « + 1 .

By the left-right duality we also define the right «-factorization of z in the form
z " + 1 z " . . . z 1 z f f z 9 _ 1 . . . z 1 for £ ^ 0 .

The following observation follows directly from the définitions:

LEMMA 4: Let z, ueA* and \zx\=k. Then zq~ u (or zxq = uxq) for
k

q^(n+l) YJ i implies that left n-factorizations of z and u are the same in the
i = l

sensé that z^z1 z2 . . . zhz
1 z2 . . . zn + 1, u = ux u2 . . . uhu^ u2 . . . w" + 1 and

ZiT = M,-Ts (Z= l , 2, . . ., «), Z ^ ^ W 1 ! .

The similar observation is true for the right factorizations.

So far, in case (2), we have that x = x 1 x 2 . . . xr_1zbwat and
y=yi-y2 - • -yr-iubsav, and xm~ y for m = m(n, k+l, r). Now, let us observe
that (Ar~\ al9'a29 . . . , aq, b)ex(^y) iS(al9-a29 . . . , flfl)e2 (eu, respectively).
Hence, xm~ y implies that (zb)xq = (ub)xq for q^m(n, k+l9 r)-(r—1)

) - 1 . Since q>(n+1) J] i, by Lemma 4 the left «-factorizations of zb and
i

wfc are respectively, z1z2 . . . z^z1 z2 . •.. z"+/ and u1u2 . . . w^w1 u2 .. . MB + 1 ,
where wix = z-x (z= 1, 2, . . ., «), ̂ ^ 0 , and z1 x^w1 x.

Similarly, (Ar~\ a9. al9 a^9 .1.9 aq)èx(ey) iff (al9 a2) .. ., aq)e t (eu,
respectively) for #="1;- l4ênce, xm-^y implies that 2Xq~ av for

q^m(n, k+l9 r ) - ( r - l ) (£+lj- l . Again, since ^r>(n+l) ^ z, by the right-
i = l

left duality and Lemma 2, the right «-factorizations of at and av are respectively:

f " + 1 ; n . . . t 1 t g t g _ 1 . . . t x a n d I ; " + 1 Î ; " . . . v l v g v g _ 1 . . . v l 9

where ?1X = ZJ1X and tj-z^VjX ( j = l , 2, . . . , g), g^O.

Our pro ving way now will depend on the letter content ot w:

2(A) il w~wx w2 for some wl9 w2eA* such that w1 x^z 1 x and M;2
X= ^ XJ

vol. 17, n° 4, 1983



340 R. KNAST

2(B) if w = wxyw2$w3 for wl9 w2, w3eA^iy, fisA such that w
w3x^t1x and y £ z1 x, p <£ r1 x.

2(C) if w — wx y w;3 for y ̂ z1 T U tf1 X, WXX^ZX X and u?3x<i f1 x.

Now, if MMS of type 2 (B), thenxm~ yimplies th&t(Ar~1,z1x,z2x, . . . ,zhx,y,

P, tgx, tg_1x, . . . , t1x)ex iff (A'"1, z ^ , z2x, . . . , z^x, y, p, tgx, tg_1x, . . . ,

hT)£y, because:

and zi
tz = uix9 tjX = VjT (i=l9 2, . . . , h,j=l, 2, . . . , g). Hence, the conditions

y^z1 x = wxx and P^ *1x = u1x imply that s = s1ys2$s3 for some sl9 s2, ^3eZ*
such that y^^iX and P^1s3x, but not necessarily s1x^z1x, 1s3xgr1x. If
w = w1yw3i then similarly j = 5j y s3. By this, if w is of type 2(A), then s = s1s2 for
$! x g z1 x and ^2

 T = ? 1 T-

2 (A) We have:

r _ 1 z 1 z 2 . . . z ^ z ^ . . . z w 1 w 2 t t . . . t t g t g _ 1. . . x r _ 1 z 1 z 2 . . . z ^ z ^ 2 . . . z n + 1 w 1 w 2 t H + 1 t n . . . t 1 t g t g _

and:

. . . Un+1S1S2V
n

Since z1x = w1x, there are lactorizations z1=z[z\ and u1 =u\u\ such that
zïco = w{ co = z | x =w2 oc for some z\,z\,u\,u\eA*. Similarly, ^1X = Ü1X
implies that r1 = ^ ?2, Ü 1 = Ü J Ü J such that I ;{Q>^P2 OC = /J CÖ= ̂ J OC- Hence by
the définition of ~ , since S1X^JW1X^Z1 x and s2 x u w2 x £ z1 x we have:

z\z2...za+1ii>1w2t
n+1tn... t2 t{ n~ ulu2 . . . un + 1 sxs2v

n+1 vn. . . v2 v{.

Also, by the définition of B ^ s z^z2 . . . z" + 1
 B~ w^w2 . . . un+i and

r + 1 / n . . . ? 2 ^ „ - z ; n + 1 ...v2v\.

On the other hand, from the choosing of letter b it follows that
xx x2 . . . xr_x zbq^~ yxy2 • • . yr-i ub for qx =m{n, k+1, r) — 1 and from the
choosing of letter a, it follows that atq~av for q2=m(n, fc + 1, r)—(r—1)
(A: +1) — 1. Consequently, since (zè) x = (wè) x g ^4, (a ?) x = (ar) f ^ i i i and
q1>m(n, k+1, r — l), q2>m(n, k), then by the induction assumption
for p = r — 1 :

xxx2 . . . x r „ 1 z 1 z 2 . . . z ^ z 2 . . . z r t + 1
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n- yiyi • • • yr-i
uiu2 - • • uhul ul • • • w " + 1 a n d by the gênerai induction

assumption:

il1

. . . V

Thus, since n~ is a graph congruence, x„~ y.
2(B) In this subcase, we have:

x = x1x2.. . xr_1z1z2 . . . zhz
x z2 . . . zn+1

. . . u n + i

s 1 y s 2 $ s 3 v n 1 v n . . . v 1 v g v g _ 1 . . . v \ ,

where y$zlx = u1x, fi^t1 x = vl%, y$s1xi fi$s3x and wl

Now, (a , , a2 , . . ., aff, P, fff x, ttt. ! T, . . . 9 f t x) e x (e j;) ifF

(au a2, .. ., aq)exlx2 . . . xr^1zbwx yw2 (r)'i y2 • • • J^-i «^1 Ŷ 2> respecti-
vely), for ^^0 . Hence, xm~y implies that:

x1x2 . .. xr.

for:

g *

q = m(n, k + 1 , r ) — ^ I r - t l — l ^ m ( « , A : + l , r) —« ^ ] Ï — 1 .

Thus, (zèu;1yiü2)xg^[ and q>m(n, fc+1, r -1 ) imply by the induction
assumption for /> = r — 1 that:

04 r ~\ zxx, z2x, . . . , zhx, y, al9 a2, ..., aq)ex(ey) üF (au

a29 . . . , aq)ew2$w3at (es2$s$av9 respectively) for q^O. Hence, xm~ y
implies that w2fiw3at q~ s2$s3av for:

Since q>m(n, k) and (w2 (3 u>3 ai) x = (s2 (3 53 av) x $ A9 by the gênerai induction
assumption we have:

w2$w3at n~ s2 $s3av.
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F i n a l l y , 0 4 r ~ \ z 1 T , z 2 T , . . .9zhx9y9aua29 . . . ,û f l ,P ,^x, f f f - iX s . . ., /^XJ.G.V

J a 2 ) . . ., ^)ew2(es2>respectively);<7^0. H e n c e , x m ~ j;implies that
S2 f o r :

h

-2n £ z-2.

Since q>m(n, k) and w2 T = S 2 x $^4, then by the gênerai induction assumpuon:

w2ac*s2.

Thus, since „~ is a graph congruence, x w ^ 3;.
2(C) The proof follows as in 2(B), it is stïfficient to regard y and (3 as the same

letter and M ; 2 = ^ 2 = À-.D

(d)=>(b): Congruence m ^ satisfies (b) for n = m, consequently, also ^
satisfies (b). G

(b) =>(a) : Let x = xx x2 . . -. xh and >' = y1 y2 - • • y h be coterminal paths such
that Xi/yi for ƒ= 1, 2, . . . , A and A^ 1. Then, by the définition of relation f,
xi~zi ytz2 anc* yi~zl?>XiZ4 for some paths zl

l9 z2) Z3, z^. Consequently:

x(^(ziz^x,(ziz2r
and:

Xlx2... x^izlzlYxM^T &UÏ)"x2(zlz2
2y . ..(z\z\yxh{zlzh

2)\
for n ̂  0. Since x and y are coterminal, then z\ and z\ are loops about the same
vertex. Similarly, z\ and z\ are loops about the same vertex. By (Z?)for sufficiently
large n and since ~ is a graph congruence:

Note that for i = l , 2, . . ., A - l zi and zi+1 are coterminal. Next, since:

^•~4(zi4r*<(44)4,
we obtain x~y. Thus ^ is dot (^)-trivial. D

REFERENCES

1. J. A. BRZOZOWSKI and L SIMON, Characterization ofLocally Testable Events, Discrete
Math., Vol. 4,1973, pp. 243-271.

2, S. EILENBERG, Au toma ta, Languages and Machines, Vol. B, 1976, Academie Press.
3, R. KNAST, A Semigroup Characterization of Dot-Depth One Languages R.A.I.R.O.,

Informatique théorique, Vol. 17, No. 4, 1983, pp. 321-330.
4. I. SIMON, Piecewise Testable Events {2nd Gl-Professional Conference on Automata

Theory and Formai Languages, L.N. in Computer Science, Vol. 33, 1975, Springer
Verlag, pp. 214-222).

RA.I.R.O. Informatique théorique/Theoretical Informaties


