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A SEMIGROUP CHARACTERIZATION
OF DOT-DEPTH ONE LANGUAGES (*)

by Robert Knast (%)

Communicated by J.-F. PERROT

Abstract. — It is shown that one can decide whether a langage has dot-depth one in the dot-depth
hierarchy introduced by Brzozowski. The decision procedure is based on an algebraic
characterization of the syntactic semigroup of a langage of dot-depth O or 1.

Résumé. — On démontre que I'on peut décider si un langage est de hauteur 1 dans la hiérarchie de
concaténation introduite par Brzozowski. L’algorithme de décision est basé sur une condition
algébrique qui caractérise les semigroupes syntactiques des langages de hauteur inférieure ou égale a 1.

1. INTRODUCTION

Let 4 be a non-empty finite set, called alphabet. 4™ (respectively A*) is the free
semigroup (respectively free monoid) generated by 4. Elements of A* are called
words. The empty word in A* is denoted by A (the identity of A*). The
concatenation of two words x, y is denoted by xy. The length of a word x is
denoted by | x|.

Any subset of A* is called a language. If L, and L, arelanguages, then L, U L,
is their union, L, N L, is their intersection, and L, = A* — L, is the complement
of L, with respect to A* Also L, L,={weA*|w=xy, xeL,, yeL,} is the
concatenation of L; and L,.

Let ~ be an equivalence relation on A*. For xe A* we denote by [x]_ the
equivalence class of ~ containing x. An equivalence relation ~ on A* is a
congruence iff for all x, ye A*, x~y implies uxv~uyv for any u, ve A*.

The syntactic congruence of a language L is defined as follows: for x, ye A*,
x=, yifffor all u, ve A* (uxv e L iff uyv e L). The syntactic semigroup of L is the
quotient semigroup 4% /=,.

Let n be any family of languages. Then 1) M (n B) will denote the smallest
family of languages containing 1 and closed under concatenation (finite union
and complementation respectively).

(*) Received February 1981, revised May 1983.
(') Institute of Mathematics, Polish Academy of Sciences, 61-725 Poznan, Poland.
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322 R. KNAST

Lete= {{L},{a}; ae A} bethefamily of elementary languages. Then define:

#B,=¢B,
B,=B,_, MB for k=1.

This sequence (%,, %#,, ---, By, ---) is called the dot-depth hierarchy. A
langage L is of dot-depth at most k f Le %,.

The dot-depth hierarchy was introduced in [3]. It was proved in [2] that it is
infinite if the alphabet has two or more letters. In [4] it was shown that (%, 4,
...)forms a hierarchy of + — varieties of languages. Therefore, in the rest of the
paper we consider languages as subsets of A*. For an excellent and general
presentation of problems related to this paper the reader is referred to
Brzozowski’s survey paper [1] or the above mentioned monograph of Eilenberg
(4].

In [6] Simon conjectured that a language L is in 4, iff its syntactic semigroup

S, is finite and there exists an integer n> 0 such that for each idempotent ein S;,
and any elements a, beS;:

(eaeb)" eae=(eaeb)" e =ebe(aebe)".
Simon also proved that L e 4, implies this condition. By an exafnple we show
that this conjecture fails. We present a necessary and sufficient condition for a
syntactic semigroup to be the syntactic semigroup of a language of dot-depth at
most one. The main result is as follows: Let L be a language and let S, be its
syntactic semigroup. Then Le %, iff S, is finite and there exists an integer n>0
such that for all idempotents e,, e, in S, and any elements a, b, ¢, deS;:

(eyae, b)" e, ae, de,(ce,de,)" =(e, ae, b)"e,(ce, de,)".

We will refer to this as the “dot-depth one” condition. This semigroup
characterization gives a decision procedure for testing whether or not a regular
language is in 4,.

In the proof of this characterization we use a theorem on graphs from [5].

We will say that a language Lc A" is a ~ language, if L is a union of
congruence classes of ~. Let L be a language and let S; be its syntactic
semigroup. The class [x] =, as an element of S;, will be also denoted by x, where

xeA". Then x=,yiff x=yin S,.

2. BASIC CONGRUENCE,, ~, [6]

Let k, m be integers, k=1, m>0. Let v=(w,, w,, ..., w,) be an m-tuple of
words w; of lengthk, i.e. |w;| =k,w,e A*i=1,2, ..., m. Wesay that v occurs in
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DOT-DEPTH ONE LANGUAGES 323

x, x€ A* (we write v e x), if x=u, w; v, for some u;, v,e A*(i=1, 2, ..., m)such
that |u;| < |u; .,m—1.
Let us set:

T, ()= {v|ve(4")™ and ve x}.

By convention 1, ,x=0.

For xeA* and n2>0 define f,(x) as follows: if |x| <n, then f,(x)=x;
otherwise £, (x) is the prefix of x of length ». Similarly, ¢,(x)=x if ] x| <n,and
t,(x) is the suffix of length n of x otherwise.

Now, for x, ye A* and k=0, m=0 we define:

X~ oy ff x=y if |x|Sm+k—1
or /i (x)= £ (¥), t(x)=1,(y)

and 1, .4+ (X) =1, ;+,(y) otherwise.

In the case k =0 we write t,, instead 1,, ,and ,, ~ instead ,,~ . If m=1, we also
write T instead T;.

ProposiTION 1:(a) ,, ~  is a congruence of finite index on A*; (b) x ,, ~ ;.y implies
X mo1~iYsfor m21 and all x, ye A*; (¢) w(xw)™ .~ wxw)™* !, for w, xe A*
and |w| =k; (d) (wyxw,y)" Wy xwy 0w, (Uwy vw )"~ (W X0, )™
wy (uw, vw, )", for wy, wy, X, y, u, ve A* and |w, | = |w, | =k.

Proof: The verification of (a), (b) and (c) is straightforward.
(d) By (b):
T, k41 () =Ty 41 ()
implies:
T k1 () =T 142 (),
for all x, ye A* and je{0, 1, ...,m}. If.
Vi=(Wyp, - .., w)e(A*T)
and
vo=(v, ..., ) (A" 1),

we denote by (v,, v,) the i+j-tuple (w;, ..., w;, vy, ..., v)e(4* 1)
Evidently:
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324 R. KNAST

T, k4 1 (W X W Y)W ) ST, 1 (W X w5 ¥)" Wy xW0,)

)m+1

Etp k+1(wy xwsy w,;).

Using (¢), we have:
T, kv 1 (W3 X W5 Y)™ Wy XW03) =T, 44y (w1 X, )" w,).
Similarly:
T, e+ 1 (W VW (U, VW01)™) =T o4 1 (W (W03 v01)™).

Since |w, | =|w, | =k, by the above conclusions from (b) and (c):

Tm, k+1 (wy xw, y)™ wy xw, vw,; (uw, vw,)™)= U {(vla VZ)IVI
i+j=m
":21.]20

€T g4 1 (Wy Xw, )" wy xw5), v, €Tj k+1 (w, vw; (uw, vw,)™) }

= U {(Vp Vz)'V1 €7 1 (W X Wy )" w1), v, €Tj, w1 (wy (uw, vw,) m)}
i+j=m
n:ng',jgo
=Ty, k41 (W X Wy ¥)" W,y (w; vw,)™). [

Tueorem 2 (Simon [6]): 4 language L is of dot-depth at most one, Le B, iff L is
a ,,~, language for some m, k 20.

3. GRAPHS AND THE INDUCED SYNTACTIC GRAPH CONGRUENCE

First we briefly recall Eilenberg’s terminology for graphs [4]. A directed graph
G consists of two sets, an alphabet 4 and a set of vertices V, along with two
functions: a, ® : 4 — V. Elements of A are also called edges in this case.
Two letters (or edges) a, b€ A are called consecutive if aw=>b a. Let D = A% be
the set of all words ab such that g and b are non-consecutive. Then the set of all
paths of G is:
P=A"—A*DA*

Functions o, ® can be extended to o, ® : P — V in the following way: if
p=a,a,...a,eP,a,,a,,...,a,e A, thenpa=a,o,po=a,n. Foreachvertexv
we adjoint to P a trivial path 1, where 1 ja=1,0=v. fp=a, a,...a,€P, then
the length of p, |p|=n.

A path p is called a loop if pa=pw. We say that two paths p, and p, are
consecutive if p; ®=p, «. In this case the concatenation p, p, is again a path.
Two paths p, and p, are coterminal if p, a=p, a and p; ®=p, ®.

R.A.LR.O. Informatique théorique/Theoretical Informatics
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An equivalence relation ~ on P is called a graph congruence if it satisfies the
following conditions:

(i) if p, ~p,, then p, and p, are coterminal;

(ii) if p, ~p, and p;~p, and p,, p; are consecutive, then p, ps ~p, p,.
For trivial paths, by convention we set 1,,(1,) = @. Thus the relation ,, ~ (,, ~ ;) is
also defined on P. In [5] the following theorem is proved:

THEOREM 3: Let ~ be a graph congruence of finite index on P satisfying the
condition:

A) (P1P2)"P1P4(P3P4)n~(P1P2)"(P3P4)",

forsomen=1andp,,p,,ps,p,€P.(Note that p, p, and p; p, must be loops about
the same vertex).

Then there exists an integer m= 1 such that for any two coterminal paths x and
Y, Xxm~y implies x ~y.

We will use this theorem in proving the semigroup characterization of
languages of dot-depth at most one (£,).

Let A be afinite alphabet. Define a graph G, =(V, E, a, @)fork =0 asfollows:
V={w|weA* and |w| =k} is the set of vertices,
E={(w,, o, w,)|ced, w, w,eV and t,(w, 6)=w, },
is the set of edges (letters)
a,o: E->V,(w, o, w)a=w,, (W, o, w) 0=w,.

Let P be the set of all paths in G,, including the empty path over each vertex
from V. Now, let us define the mapping:

: A¥A* - P,
recursively as follows:
x=1, if xedk,

x 6 =x(t,(x), o, t,(x0)).

For k=0, by convention A°={\}. One can verify that the mapping ~ is
bijective. It follows from the definition that | x| =k+h, h20 iff |x| =h.

If p is a congruence relation on A*, then by p we will denote the induced
congruence on P defined in the following way:for x, ye P, x,y € A* A*, xp yif x, y
are coterminal paths and x p y. One can verify that p is a graph congruence on P.
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326 R. KNAST
ProPOSITION 4: Let G, be a graphfor k =1 and P be the set of all paths of G,. Let
xe A* A*. If x=x, X,, then X=X, 1,(x,) X,, for | x, | 2k.

Proof: If |x|=k, then the only decomposition possible is x=xA. But
x=1,=1_1,=xxA=Xx1t,(x)\. Induction assumption: the proposition is true
for x such that |x|=k+h, h20. Suppose x=x, x, 0, where |x, x,|=k+h
and | x, | Zk. By definition:

x=x1 %, (t;(x; X3), 0, 1,(x; x; G)).

By the induction assumption:

Xy Xy =Xy L(xy) X,

Hence:
x=Xx; t,(X1) X5 (1, (x; X,), ©, t,(x; X, ).

Again by definition:

L(x1) X5 6 =1, (x;) x5 (1, (2, (x1) X3), O, 1, (£(x,) X, ©)).

Thus x=x, t,(x,) x, because #,(x, x,)=1,(t,(x,)x,). Thus the induction
step holds. [

LemMma S: Let xe A*A* and x=a, a,. . .a,, a;€E, j=1,2,...,n. Then for
ie{1,2, ...,n} a;=(w, o, 1,(wo)) iff x=x, WG x, for some x,, x, € A* and
|x, wo|=k+i.

Proof: Suppose f, ., ;(x)=x, wo. By Proposition 3 x—x, wwo x,. By the

definition  of it  follows from  Proposition 3 that

wox, =(w, o, t,(wo)) (o) x,. Also by the definition of ~ ]x1w| =i—1,
because | x, w| =k+i—1. Hence a,=(w, o, t,(w ).

The converse follows in the similar way. O
ProrosiTiON 6: For any x, ye A* A*:
X~y implies X, ~y,
where x, ye P of G,.

Proof: If | x| <m+k, then x=y and consequently, x ,~ y. Otherwise, let
T, k+1(0) =T, k41 () # O. 1t follows from Lemma 5 that (w,, o, v,), ...,
(wm9 O ms Um))ETm(;) lmphes (wl Ci15 -+ +» wm Gm)e‘tm, k+1 (x)=tm, k+1 (y) Hen-
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DOT-DEPTH ONE LANGUAGES 327

ce, again by Lemma 4 (w,, 6, v;), ..., (Wp Opms Um))€E€T,(¥). Thus,
Tn(X)E1, (). By symmetry, 1,,(3) S T,n(X)-
Since f,(x)=f,(y) and t,(x)=1¢,(y), then x and y are coterminal.
Consequently, x,,~y. [

ProposiTiON 7: Let LS A" and let S, be the finite syntactic semigroup of L,
satisfying the condition: there exists m,m> 0, such thatfor all idempotentse,,e, in
S, and any elements a, b, ¢, deS;:

(eyae, b)" e, ae, de, (ce, de,)" =(e, ae, b)" e, (ce, de,)™.

Then the congruence =, =, on P of Gy for k=card S, +1, induced by the syntactic
congruence =, satisfies condition (A) of Theorem 2 and is of finite index on P.

Proof: Since G, is finite and =, is of finite index on A, then =, is of finite
index on P.
We have to show that there is an integer n, n>0 such that:

A (P1p2)" Py P4(P3P4)";:(p1 P2)"(P3Ps)",s

for py, P, 3, P4€P.

Since p, p, and p, p, are loops about the same vertex and since paths p, and p,
are consecutive by (A), then =p,o=pso=p,0=w, and
P1®=Pr0=p30=p,0=0 for some ne w, veA" Therefore we may assume that

Py =Wy, Py =Dy, P3 =Wy, Ps=0U, fOr some u,, u,, Uz, uy€A* such that

t (wu,)=t, (wuz)=v, t,(vu,)=t,(vu,) =w. Consequently:

@102)"P1Pa@3 )" =w Uy uy)" uy g (us uy)".

Similarly:

(P172)"(P3p)"=w (g uy)" (U3 us)"
By the definition of = it is sufficient to show that there exists n, n>0, such that:
w (g up)" uy Uy (U3 ug)" = w(uy uy)" (U3 u,)",
Le.:

(1) W (U 45)" Uy 1y (3 Ug)" = w (1 Up)" (U3 Us)".

Let seS;. Since S, is finite, then 5" is an idempotent for some r=1 ([4],
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328 R. KNAST

Proposition 4.2, p. 68). Now, since S, satisfies the dot-depth one condition,
there is m=1 such that:

sr (ssr)m =g (Ssr)m+ 1
l.e. s"s™=s"s"s. It follows that there exists an integer g such that for any se S,
s7=s7"1].e. S, is aperiodic.
We claim that (1) holds for n>m, q. First we will show that if
|uy uy| > 0(|uzu, | >0) then we may consider u,, u,(us, u, respectively) such

that |u,|, |uy| 2k (Jus|, |us| >k respectively). Since n>g, then by the
aperiodicity of S;:

Wy uy)"=w (4, u,)" Y.
Let us define:
171 =(u; uy)*uy, ':2 =u, (uy uy)".
Evidently:
lug |, |uy | 2k, twu)=v,  tvu)=w

and:

w (U u,) =w(171 u,)".

Similarly, we may proceed for u; and u,.

Now, we consider the full case if |u,u,|, |usu,|>0. The other cases if
| uy u,| =0o0r | usu, | =0follow in the same way. By the above, instead of proving
(1) it is sufficient to show that:

2 W v Uy w) uy i w (U vuy w)"=w (U, vu, w)" (uy vu, w)",

holds.
Now, since |w|=|v|=k>card S, +1, then w=w, w, w; and v=0, v, v, for
Wy, w3, 0y, 03€A,w,,v,€ A" suchthatw, =w, ), v, =v, v} forany i=20. So as

before, we can choose i such that w} and v} are idempotentsin S;. Thus(2) can be
rewritten in a form:

w, e, (ae, be,)" ae, de,(ce,de,)" wy=w, e, (ae, be,)"(ce, de;)" w,,
— i D 3
where: €, =W,, €;=0;, Aa=W3U; vy,
b=vyu,w,, C=W3U30,

R.AL.R.O. Informatique théorique/Theoretical Informatics



DOT-DEPTH ONE LANGUAGES 329

and d=v,u, w,. Thus by the dot-depth one condition, (2) holds. O

4. SEMIGROUP CHARACTERIZATION OF %,

Now we are in a position to prove our main result.

THEOREM 8: Let L be a language, LS A" and let S, be its syntactic semigroup.
Then the following are equivalent:

(1) LeB,;
@) L is a ,~, language for some m,k=1;
(iii) S, isfinite and there is an integer n>0 such that for all idempotentse,,e, in
S, and any elements a, b, ¢, d in S;:

(eyae, b)"e, ae, de,(ce, de,)" =(e, ae, b)" e, (ce, de,)".
Proof: (i) <> (ii) by Theorem 2;
(ii) = (iii) : by (@) of Proposition 1 S; is finite.
Now,lete; =z,,e,=z,,a=x,b=y,c=u,d=vforsomez,,z,,x,y,u,ve A",
Define w, =z}, w, =z4 for h such that |w, |, |w,|2k. Consequently, e, =w,,
e,=w,. By (d) of Proposition 1 for ,~ :

(W xw, y)™ w; xw, vw; (uw, vw,)™ =W, Xw, y)" w, (Uw, vw,; )™

Thus §; satisfies the dot-depth one condition with n=m.
(i) = (ii): suppose S, satisfies the dot-depth one condition with n. Letk =card

S+ 1. By Proposition 7 the induced syntactic congruence =, on P of G & satisfies
the condition (A) of the theorem on graphs with some n, >n, g, and is of finite
index on P. Hence by Theorem 3 there exists m such that for any two coterminal
paths x, y. '

x,~y implies x=,y.
Now, consider x, ye A* A*, and the congruence , ~,. We have that x ,~,y
implies x ,, ~ y and that x, y are coterminal. Hence, x ,,~ , y implies x =, y and
consequently, x=, y. If |x| <k, then x ,~,y implies x=y and consequently,
x=,;y. Thus Lis a ,~, language. O
It is easy to see that if a syntactic semigroup satisfies the dot-depth one

condition, then it also satisfies the condition: there exists an integer »>0 such
that for any idempotent e in S; and any elements a, b S;:

(eaeb)" eae =(eaeb)" e = ebe(aebe)".

vol. 17, n° 4, 1983



330 R. KNAST

The following example shows that the converse is not true.

Let A={0, 1, 2, 3} and let L=(01* 0 02*)*01* 3(2* 3L 1" 3)*. The
syntactic semigroups S; of L satisfies the above condition, but it fails the dot-
depth one condition. By Theorem 8 L¢ %,. On the other hand one can verify
that L ¢ 4&,, apart from Theorem 8, using (d) of Proposition 1 and proving that
for any m, k L cannot be a ,,~, language.
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