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A SEMIGROUP CHARACTERIZATION
OF DOT-DEPTH ONE LANGUAGES (*)

by Robert KNAST (*)

Communicated by J.-F. PERROT

Abstract. — It is shown that one can décide whether a langage has dot-depth one in the dot-depth
hierarchy introduced by BrzozowskL The décision procedure is based on an algebraic
characterization of the syntactic semigroup of a langage of dot-depth 0 or 1.

Résumé. — On démontre que Von peut décider si un langage est de hauteur 1 dans la hiérarchie de
concaténation introduite par BrzozowskL L'algorithme de décision est basé sur une condition
algébrique qui caractérise les semigroupes syntactiques des langages de hauteur inférieure ou égale à 1.

1. INTRODUCTION

Let A be a non-emptyfinite set, called alphabet. A + (respectively A*) is thefree
semigroup (respectively free monoid) generated by A. Eléments of A* are called
words. The empty word in A* is denoted by X (the identity of ^4*). The
concaténation of two words x, y is denoted by xy. The length of a word x is
denoted by | x \.

Any subset of A* is called a language. If Lx and L2 are languages, then LY u L2

is their union, Lt n L2 is their intersection, and L1=A* — L1 is the complement
of Li with respect to A*. Also L±L2= {weA* \w = xy, xeL l 5 yeL2) is the
concaténation of L1 and L2.

Let ~ be an équivalence relation on A*. For xeA* we dénote by |XL the
équivalence class of ~ containing x. An équivalence relation ~ on A* is a
congruence iff for ail JC, y e A*, x~y implies uxv ~ uyv for any M, veA*.

The syntactic congruence of a language L is defined as follows: for x, y e A*,
x^Ljiffforallws v eA*(uxv eLiff uyveL). The syntactic semigroup of L is the
quotient semigroup A + /=L.

Let Ti be any family of languages. Then r\ M{x\ B) will dénote the smallest
family of languages containing r| and closed under concaténation (finite union
and complémentation respectively).

(*) Received February 1981, revised May 1983.
i1) Institute of Mathematics, Polish Academy of Sciences, 61-725 Poznan, Poland.
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322 R. KNAST

Lete= {{ ̂  },{#}; aeA}bethefamilyofelementarylanguages.Thendefme:

k k i for fc^l.

This séquence (^0> âil9 . . . , 0tk9 . . . ) is called the dot-depth hierarchy. A
langage L is of dot-depth at most k if I e J f e .

The dot-depth hierarchy was introduced in [3]. It was proved in [2] that it is
infinité if the alphabet has two or more letters. In [4] it was shown that (#0 , &t,
. . . ) forms a hierarchy of H— varieties of languages. Therefore, in the rest of the
paper we consider languages as subsets of A+. For an excellent and gênerai
présentation of problems related to this paper the reader is referred to
Brzozowski's survey paper [1] or the above mentioned monograph of Eilenberg
[4].

In [6] Simon conjectured that a language L is in ^ x iffits syntactic semigroup
SL is finite and there exists an integer n > 0 such that for each idempotent e in SL9

and any éléments a, beSL:

(eaeby eae=(eaeb)n e = ebe{aebe)n.

Simon also proved that Le^1 implies this condition. By an ex^rnple we show
that this conjecture fails. We present a necessary and suflïcient condition for a
syntactic semigroup to be the syntactic semigroup of a language of dot-depth at
most one. The main resuit is as follows: Let L be a language and let SL be its
syntactic semigroup. Then Le^liSSL is finite and there exists an integer n>0
such that for all idempotents el5 e2 in SL and any éléments a, b, c, deSL:

(e, ae2 b)n ex ae2 dex (ce2 de1)
n=(e1 ae2 b)n e, (ce2 dex)\

We will refer to this as the "dot-depth one" condition. This semigroup
characterization gives a décision procedure for testing whether or not a regular
language is in &x.

In the proof of this characterization we use a theorem on graphs from [5].
We will say that a language L<=A+ is a ~ language, if L is a union of

congruence classes of ~ . Let I be a language and let SL be its syntactic
semigroup. The class [x] =L, as an element of SL, will be also denoted by x, where
xeA + . Then x~Ly ifTx=j; in SL.

2. BASIC CONGRUENCEm~k [6]

Let k, m be integers, k^l, m^O. Let v=(u>l9 w2, . . . , wm) be an m-tuple of
words wt of length k, i. e. | wt \ = k, wi e A* i = 1,2, . . . , m. We say that v occurs in
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DOT-DEPTH ONE LANGUAGES 323

x, xeA*(y/e write V^JC), if x = uiwivi,ïox somei^, vieA*(i=ly 2, . . . ,m) such
t h a t \ u j \ < \ u j + 1 \ , j = l 9 2 , . . . , m - l .

Let us set:

By convention x0 kx — Ç).

For x e i * and « ^ 0 defme fn{x) as follows: if |JC| ^w, then fn(x) = x;
otherwise ftt(x) is the prefix of x of length n. Similarly, tn{x) = x if | JC| Sn>
tn(x) is the suffix of length n of x otherwise.

Now, for xyyeA* and Ar^O, m^O we define:

xm~ky iffx = y if | x | ^

or/ f c(x)=/k(y), tk(x) = tk(y)
and xm f k + 1(x) = Tm)k + 10;) otherwise.

In the case k = 0 we write xm instead xm 0 and m ~ instead m ~ 0 . I f m = l , w e also
write T instead xx.

PROPOSITION l:{a)m~kisa congruence offinite index on A*; (b)xm~ ky implies
xm-i~k.y>for m ^ l and all x9yeA*; (c) w(xw)m

 m~ kw(xw)m+1 ,for w, xeA*
and \w\ =k; (d) {wx xw2y)m wx xw2 vw1 (uw2 i?tü1)

m
 m ̂ k(w1 xw2y)m

wl(uw2vwiy
n
ifor wu w2, x, y, u, veA* and \w1\ = \w2\ ^k-

Proof: The vérification of (a), (b) and (c) is straightforward.

(d) By (b):

implies:

for all x,. y e A* a n d ; e { 0 , 1, . . . , m } . If

and

we dénote by (Vj, v2) the Z+y-tuple (wx, ...9wi9vl9 . . . , Vj)e(Ak+1)i + J.

Evidently:
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324 R. KNAST

f* + !"((«?! x w2y)mwxxw2)

Using (c), we have:

Vfc+iC

Similarly:

Since | Wi | = | w21 =fc, by the above conclusions from (b) and (c):

t«, fc+1 (Oi -v ii?2.y)m » ! xw2 WÜ! (ww2 ÜM;!)"1) = U {(vi, v2) I vx
i+j=m

E*i,k+i ((^i x Wi.y)"1 Wi xw2), v2 e xJt k + i (w2 vwx (uw2 vwx)
m)}

= U {(vl9 v2) |v1ex i f J k + 1((w1Xtt;2.j;)
MM?1), v2eTjk + l(wi(uw2vw1)

m)}
i+j=m

= V t + i ( ( | ü i x ^2y)mw1(uw2vw1)
my D

THEOREM 2 (Simon [6]): A language L is of do t-depth at most one, Le@u iffL is
a m ~ h language for some m, k ̂  0.

3. GRAPHS AND THE INDUCED SYNTACTIC GRAPH CONGRUENCE

First we briefly recall Eilenberg's terminology for graphs [4], A directed graph
G consists of two sets, an alphabet A and a set of vertices V, along with two
functions: ot, co : A -> F. Eléments of A are also called edges in this case.

Two letters (or edges) a, b e A are called consécutive if a © = b a. Let D c= A2 be
the set of ail words ab such that a and b are non-consecutive. Then the set of all
paths of G is:

P = A+-A*DA*.

Functions a, <o can be extended to a, <D : P -• V in the following way: if
p = a1a2.. .aneP9al9a29 . . .,one^45then/?a = a1a)/?(D = an(û.Foreachvertexu
we adjoint to P a trivial path 1„ where IVOL = 1V(Ù — V. 1fp~a1a2.. ,aneP, then
the length of/?, |/?| =« .

A path p is called a loop if /? a~p<ù. We say that two paths px and /;2 are
consécutive if p1 (û=p2 a. In this case the concaténation pxp2 is again a path.
Two paths /?! and /?2 are coterminal if px cc=p2 a and p1<o=p2G>.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



DOT-DEPTH ONE LANGUAGES

An équivalence relation ~ on P is called a graph congruence if it satisfies the
following conditions:

(i) if P!~p2> then/?! and/?2 are coterminal;
(ii) ïïpi~p2 and/?3~/?4 and/?!,p3 are consécutive, then pxp3~p2P4-

For trivial paths, by convention we set xm (1 v) = 0. Thus the relation m ~ (m ~ x) is
also defined on P. In [5] the following theorem is proved:

THEOREM 3: Let ~ be a graph congruence offinite index on P satisfying the
condition:

(A) (PiPiYPiPiiPsPty^iPiPiYiPîPd"*

forsome«^1 andpl9p2ip3,p^eP.(Note that pxp2 and p3p4 must be loops about
the same vertex).

Then there exists an integer m^ 1 such thatfor any two coterminalpaths x and
y, Xm~y implies x~y.

We will use this theorem in pro ving the semigroup characterization of
languages of dot-depth at most one (J^).

Let^4beafinitealphabet. DefineagraphGk=(F, £, a, a))forA:^Oasfollows:

y= {w\weA* and |w | =k} is the set of vertices,

£ = {(ü?!, a, w2)\aeA9 wu w2eVand tk(w1a) = w2}9

is the set of edges (letters)

a, © : E -• V, (wu a, w2)a = w1, (wlf a, W2)(Ù = W2.

Let P be the set of ail paths in Gk, including the empty path over each vertex
from K Now, let us define the mapping:

recursively as follows:

x=lx if xeAk,

xâ = x(tk(x), a, tk(xa)).

For A: = 0, by convention A° = {X}. One can verify that the mapping is
bijective. It follows from the définition that |x | =k + h, h^O iff \x\ =/Ï .

If p is a congruence relation on A*9 then by p we will dénote the induced
congruence on P defined in the following way: for xyy e P, xyy e Ak A*, x p y if x, y
are coterminal paths and x py. One can verify that p is a graph congruence on P.

vol. 17, n° 4, 1983



326 R. KNAST

PROPOSITION 4: Let Gk beagraphfork^ 1 andPbe the set ofallpaths ofGk, Let
xeAkA*. Ifx = x1x2, then x = x1 tk(xl)x2jfor \x11 ̂ k.

Proof: If |jc|=fc, then the only décomposition possible is x — xX. But
x=lx = lxlx = xx'k~xtk(x)X. Induction assumption: the proposition is true
for x such that |x|=A; + /z, h^O. Suppose x = x1x2o, where \x1x2\=
and | xx | ̂ k. By définition:

x = x1x2 {tk{xx x2\ a, tk{xx x2 a)).

By the induction assumption:

xx x2 — xx tk(x1)x2.

Hence:

x=*xx tk(x1)x2(tk(x1x:2), o, tk(x1x2a)).

Again by définition:

• h(Xl) X2(tk(tk(Xl) X2)> a» ^(^(^1)^2 a))-

Thus x = x1tk(x1)x2o because tk(x1x2) = tk(tk(x1)x2), Thus the induction
step holds. •

LEMMA 5: Let xeAkA* and x = axa2.. .an, a} e E, 7 = 1,2,...,«. Then for
ie{ 1, 2, . . . , « } af=(«;5 a, ̂ (UJCT)) iff x = xtwax2for some xXi x2eA* and
\x1wa\ =

Proof: Suppose fk + i(x)=x1wo. By Proposition 3 x—x1wwox2. By the
définition of ~ it follows from Proposition 3 that

wox2=(w, o, tk(wo))tk(wo)x2. Also by the définition of \xxw\=i-l,
because \xx w\ =A: + z — 1. Hence at=(w, at tk(wa)).

The converse follows in the similar way. G

PROPOSITION 6: For any x,yeAkA*:

xm~ky implies xm~y,

where x, y e P of Gk.

Proof: If |x|ï£fn+fc, then x = y and consequently, xm~y. Otherwise, let
xm,k + i(x) = xmfk+i(y)^ 0* It follows from Lemma 5 that ((wil9 ul9 vx), ...,
(wm, am, vm))exm(x) imp\ÏQs(w1Gu ..., u?mam)etm)fc + 1(x) = Tmtk+1(3;). Hen-

R.A.LR.O. Infonnatique théorique/Theoretical Informaties



DOT-DEPTH ONE LANGUAGES 3 2 7

ce, jigain by Lemma 4 ((wu au vj, . . . , (ivm9 am, vj)êzm(y). Thus,
x m W£T B ö;) . By symmetry, xM(J0SxM(x).

Since fk(x)=fk(y) and /k(.x)=fkG0> then JC and /y are coterminal.

Consequently, îcm~y. D

PROPOSITION 7: Lef £gv4 + öwd let SL be thefinite syntactic semigroup of'L,
satisfying the condition: there exists m, m > 0, such thatfor allidempotents eY, e2 in
SL and any éléments a, b, c, deSL:

(e1 ae2 b)m ex ae2 dex (ce2 dex)
m=(*i <*e2 b)m ex (ce2 dej*.

Then the congruence =L on P of GKfork = card SL + 1, inducedby the syntactic
congruence ~L satisfies condition (A) of Theorem 2 and is offinite index on P.

Proof: Since Gk is finite and =L is offinite index on A + , then =L is offinite
index on P.

We have to show that there is an integer n, « > 0 such that:

(A) ~^~

tor pl9p29p

Sincepx p2 and/?3/?4 are loops about the same vertex and since paths/?x and/?4

are consécutive by (A), then /?j a =p2 a> =/?3 a =/?4 co = w, and

p1(0=p20L=p3(ù=p4_a = v for some w, veAk. Therefore we may assume that

p1 = wu1, p2 = vu2, p3 = wu3, /?4 — t?w4. for some wls u2, w3, u^eA* such that

= v, tk(vu2)=tk(vu4) = w. Consequently:

Similarly:

By the définition of =L it is sufficient to show that there exists n, n > 0 , such that:

U?(«i W2)
W II! W4(«3 M4)" = L lu(lli W2)"(«3 M4)B,

Le.:

(1) ^(w1«2)nWl

Let .seSL. Since 5Z is finite, then sr is an idempotent for some r ^ l ([4],
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328 R KNAST

Proposition 4.2, p. 68). Now, since SL satisfies the dot-depth one condition,
there is m ^ l such that:

i. e. srsm = srsms. Itfollows that there exists an integer q such thatfor any se$L

sq = sq~*~1 i.e. SL is aperiodic.

We claim that (1) holds for n>mi q. First we will show that if
| " i u2\ > 0 ( | M 3 M 4 | >0) then we may consider ul9 u2(u^ w4 respectively) such
that | M I | , | W 2 | = ^ (|^3|? |M4j>fe respectively). Since n>q, then by the
aperiodicity of SL:

Let us define:

Evidently:

|« l |> |"2 |^ f c » tk(wÜ1) = V, tk(vU2) = W

and:

Ë(«i«2) =w(uxu2)
n.

Similarly, we may proceed for u3 and w4.

Now, we consider the full case if |M1M2 |» | W 3 W 4 | > 0 . The other cases if
| «! u21 = 0 or | w3 w41 = Ofollow in the same way. By the above, instead of proving
(1) it is sufficient to show that:

(2) ^_(jilR U2 MQ" "I VU* W (^3 VU* ttQ" = W. (^i ^ 2 UJ,)"(«a vu* WY>

holds.

Now, since |w | = \v\ =fc>card S L + 1 , then w = wlw2w3 and v = vlv2v3 for

M?I,M?3, Vi,V3ei4,iü.2, v2.e-4+ suchthatiü1 = iü1tt?2,j;1=t^1£2forany Ï ^ O . Soas

before, we can choose i such that w_2 and^2 are idempotents in SL. Thus (2) can be

rewritten in a form:

S i «i (û^i &?!>" ̂ 2 ^ i (ce2 &i)"!«3 = ™i ei (ae2 be1)
n{ce2 de{)nui3,

where: ' e i=sL H~^ a^^]iiLu

R.A.I.R.O. Informatique théorique/Theoretical Informaties



DOT-DEPTH ONE LANGUAGES 329

and d=^uAuiv Thus by the dot-depth one condition, (2) holds. D

4. SEMIGROUP CHARACTERIZATION OF mx

Now we are in a position to prove our main resuit.
THEOREM 8: Let L be a language, L^A+ and let SL be its syntactic semigroup.

Then the following are equivalent:

0) Leax\
(ii) L is a m~k languagefor some m,k^l;

(iii) SL isfinite and there is an in teger n > 0 such tha tfor all idempo ten ts e1, e2 in
SL and any éléments a, b, c, d in SL:

(e1 ae2 b)n e1 ae2 de1 (ce2 dex)
n ^(e1 ae2 b)n et (ce2 der)

n.

Proof: (i) <=> (ii) by Theorem 2;
(ii) =>(iii) : by (a) of Proposition 1 SL is finite.

Now, let ̂ i— ̂ 1,e2=z_2,a = x_, b ~y, c = uy d~ v^for some z1,z2,x,y 9 u,veA + .

Define wx=z\, w2=z2 for h such that |w 1 1 , \w2\ ^k. Consequently, ex = w_l9

e2=i^2* By (d) °f Proposition 1 for m~k:

Thus SL satisfies the dot-depth one condition with n~m.
(iii) => (ii): suppose SL satisfies the dot-depth one condition with n. Let k — card

S+1. By Proposition 7 the induced syntactic congruence s L o n P of Gk, satisfies
the condition (A) of the theorem on graphs with some nx>n, q, and is of finite
index on P. Hence by Theorem 3 there exists m such thatfor any two co terminal
paths x, y.

xm~y implies x=Ly.

Now, consider x, yeAk A*, and the congruence m~k. We have that xm~ky
implies x m ~ y and that x, y are coterminal. Hence, x m ~ ky implies x = L y and
consequently, x~Ly. If | JC| Sk, then xm~ky implies x==j and consequently,
*==£,)>• Thus L is a m~fc language. D

It is easy to see that if a syntactic semigroup satisfies the dot-depth one
condition, then it also satisfies the condition: there exists an integer n>0 such
that for any idempo tent e in SL and any éléments a, b SL:

{eaeb)n eae—(eaeb)n e = ebe {aebe)n.
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330 R. KNAST

The following example shows that the converse is not true.

Let ^ = { 0 , 1, 2, 3} and let L=(01+ u02+)*01+ 3(2+ 3 u 1+ 3)*. The
syntactic semigroups SL of L satisfies the above condition, but it fails the dot-
depth one condition. By Theorem 8 L ^ ^ . On the other hand one can verify
that Lé$\i apart from Theorem 8, using (d) of Proposition 1 and proving that
for any mykL cannot be a m~k language.
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