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THE FAMILY OF LANGUAGES
SATISFYIWG BAR-HILLEL'S LEMMA (*)

by Sândor HORVÂTH (2)

Communicated by M. NIVAT

Abstract. — 1t is shown that thereexist properly context-sensitive, recursive recursively enumerable,
and non-recursively enumerable, languages that do satisfy the classical pumping lemmafor context-free
languages (resp.for regular sets). The family of these languages is briefly studied.

INTRODUCTION

In our terminology and notation we mainly follow Hopcroft and Ullman [3],
Let E be a countably infinité "base alphabet", 5£ the class of "languages" i. e.
sets L for which there is a finite Sj c E with L c Sf. The subclasses ffîêfêSf,
<€$*', $$ are then the Chomsky classes (the classes of recursively enumerable,
context-sensitive, context-free and regular languages respectively), and let M be
the class of recursive languages. As is wellknown (see e. g. [3]), the following
chain of proper inclusions hold:

3t<s c <e& a <€¥ <= m c ms c se
* * * # #

(in this paper, an inclusion denoted by " c " is not necessarily proper).
A classical result on the class ^^', known as "Bar-HilleFs lemma" (in short

"BH lemma") or the "uvwxy theorem" or "p — q theorem" (which was first
formulated in [1] and appeared and was used later, among many others, in [2-5]),
is the following.

BAR-HILLEL'S LEMMA : For every context-free language L there exist constants p
andq such that any zeL with \z\>p can be writtenasz — uvwxy where \ \
and | vx | > 0 so that { uv{ wx1 y | i ̂  0 } <= L.

(*) Received December 1977, revised March 1978.
l1) This paper is a slightly modified version of the author's earlier paper [8].
(2) Eötvös Lorand University, Dept. Computer Math., Budapest 8.
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194 S. HORVÂTH

We say briefly that every context-free language is "BH". We remark that if we
are given a context-free grammar for L then we can effectively calculate suitable p
and q from it, and so we can décide, by means of the BH lemma, whether L is
infinité or not. Another typical application of the BH lemma is its use in proofs,
that some languages are not context-free.

Here we formulated the BH lemma in its "full", "modern" form i. e. i = 0 may
stand too in utfwx1)?. Let us dénote the family of "full BH" languages (as a
subclass of =Sf) by ^ 0 . In the original, "weak" form of the lemma (in [1, 2]) i^ 1,
and let us dénote the corresponding "weaker" family by J^. Another restriction
is the "regular case" where |uw;| = 0, and we dénote the corresponding two
"regular BH" families (analogously to &0 and Stx) by âtât0 and Si9tx. In the
following proposition we relate these four "BH families" to each other, in terms
of set-theoretic inclusion.

PROPOSITION 1: Between the families @0, â$x, $&0 and $0tv the following
relations hold:

Proof: Let

{ \ } , L2 : =

and L4: =

Then we have

L2

-âi0 and L4 e (âi0 n MMX) -

, nSStx is evident).
Q.E.D.

It can be conjectured that the full BH property is only a necessary condition
for a language to be context-free, and this is even stated, though without proof,
e. g. in [4, 5]. The aim of the present paper is to give such a proof, together with
some further (algebraic and set-theoretic) characterization of the above four BH
families.
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LANGAGES SATISFYING B A R - H I L L E L ' S LEMMA 195

ALGEBRAIC PROPERTIES OF THE BH FAMILIES AND THEIR RELATION TO THE
CHOMSKY CLASSES

The four BH families are "almost" AFL's (see [6]), namely we have the
following.

PROPOSITION 2. - The families 3l0fâ8lt @ffl0 and J ^ satisfy ail and only those
"AFL axioms" different from closedness under inverse homomorphism and
intersection with regular sets.

Proof: We prove only the two non-closedness statements (the rest is a simple
checking). In view of Proposition 1 above, it suffices to prove that the application
of these two kinds of opérations to éléments of &£%0 may result in languages even
outside <glm To show this, let

L5 : = L3 u a* (see above),

h: a\-+a, b\->ab be a homomorphism,

L6: = a*b {ei

Then we have L5 G^M0 while

fc-1(L5)=

and

(For ^ 0 and S$x only, a more complex construction is the following:

L5: = {ak2bmcdmen2\k, n^O; m ^

h : a\—>a,

Q.E.D.

In the rest of this section we relate the four BH families to the Chomsky classes,
but for the sake of simplicity we shall speak only about é%0, though all results will
be valid Verbatim for the other BH families too.

THEOREM \\âgor\{<g&-<g&)ï<p.

First proof: We construct an element L of ̂ 0 n (<$£?-<£&). Let L consist of
exactly those words v on {a, b, c} obtainable by substituting in any element w of
L': = {rjsk tm\j, m ^ / c ^ 0 } , an arbitrary element of a+ b+ for each of the letters r
and t, and an arbitrary element of a+ c+ for each s. We call the substituted
words the r-, s- or t-subwords of any v according to what letter of w they
substitute. Clearly Le@0 (e. g. with p = 0,q = 2). A context-sensitive grammar

vol. 12, n° 3, 1978



196 S. HORVATH

for L can easily be obtained by suitably modifying such a grammar of L', it is left
to the reader. We have to prove that L is not context-free. Assuming the
contrary, let L be generated by some context-free grammar in whose rules the
maximal length of the right sides in d. (Unlike the usual proofs of the BH lemma,
this grammar is context-free in the most gênerai sense, it need not be "normed" in
any manner.) Let z1,z2, . . ., be an infinité séquence of éléments of L such that
the number kt of the s-subwords of zt, -> oo if i: -> oo. For each i let Tt be a
dérivation tree of zt and 7] be the least subtree of Tt such that its terminal string
contains all the s-subwords of zt. Among the immédiate subtrees of T\ there is
one, say with root Ai, the terminal string of which contains at least (kt+\—d )/d
s-subwords, and of course does not contain both an r-subword and a t-subword
at a time. Then again there is a variable D, occurring in the séquence (At)
infinitely often. If Ah and Aii are two occurrences of D such that i2 — i'i is
sufficiently large, then by substituting the ^-subtree of 7]2 for the Aii-subtree in
7)i, we get an element of L in which the number of s-subwords arbitrarily exceeds
the number of either the r-subwords or the t-subwords, contradicting the
définition of L.

Q.E.D.

REMARKS: 1. In the above first proof of Theorem 1 the language L seems at first
sight to be unnecessarily complicated, but the case of Lx in the proof of
Proposition 1 (of which L1 e <€¥ - ^^ is wellknown, this can be proved e. g. in
a way similar to the above proof, or just by the BH lemma, since Lx is not in ̂ 0>
only in $x) shows that the main difficulty in constructing non-context-free
éléments of J*o is to cover z = 0 too.

2. Hereby we have proved the nonemptiness itself too of ̂ Sf — ̂ ïF', and in a
similar way it can be proved, without the BH lemma and any "normal form
transformation", that no language of the form {af {i)bdii)ah(i)\i}zQ} can be
context-free if the functions ƒ, g, h -> oo.

3. In this proof we used oniy the (quite gênerai) notion of a context-free
grammar and that of a dérivation tree. The following proof uses already the fact
that ^^ — ̂ ^^(p, and that all and only the context-free languages are
pushdown-automaton recognizable.

Second proof of Theorem 1; Let a, b, cel,lt HcEf, i f e ^ ^ - ^ J ^ , and

Clearly Le&0 (e. g. with p = 0, g = 3). Suppose Le<g^, then it is accepted by
some pushdown automaton (pda) M. It is easy to see that we can construct
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from M another pda Mx such that any word w e H* is accepted by Mx iff abcw is
accepted by M, i. e. H is accepted by the pda M1} contradiction.

Q.E.D.

The following results concern the existence of éléments of ^ 0 in M — <€£?,
-M and <£-0lë, and the cardinality of âiQ.

THEOREM 2:

First proof: Take an element H oiM — ̂ Sf (the existence of H is proved e. g.
in [3]), and define L exactly as in the second proof of Theorem 1. It remains to
prove only that L is not context-sensitive. Indirectly, let L be accepted by a linear
bounded automaton (lba) M, then another lba M1 which first préfixes the string
abc to its input word w and then does the same as M would do with the word
abcw as input, accepts H, contradiction.

Q.E.D.

Second proof: It is known that the context-sensitive languages (if their words
are regarded as "r-adic numbers" for suitable r) are primitive recursive sets (this
is proved e. g. in [7]), on the other hand there exist recursive but not primitive
recursive sets (languages). (Besides, this provides another proof of the existence
of non-context-sensitive recursive languages.) If in the above définition of L, H is
recursive but not primitive recursive, then the primitive recursiveness of L would
imply that of H too (since prefixing abc clearly corresponds to a primitive
recursive function), contradiction.

Q.E.D.

THEOREM 3: @on(MS-$)^(J) and &on(<S?-Mi)#Ç).

Proof: The sarhe argument as in the first proof of Theorem 2, except that now
HeMS-$ or He^-Mê respectively, and M, Mx are Turing machines
instead of Iba's.

Q.E.D.

COROLLARY: The cardinality of@0 n(i?* — 3t£)> and consequently that of@0

too, is C (continuüm).

Proof: The assertion easily follows from the preceding proof and the fact that
the cardinality oise-9tê is C.

Q.E.D.

We remark that of course the cardinality of J?-&ois C as well, since

{L|Lis an infinité subset of {a ' 2 | i^ l}} c £e-âi0.

PROBLEMS: 1. Are the sets of grammars corresponding to 0

and ^ 0 c\(0lë — têïf) recursive or àt least recursively enumerable ?
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198 S. HORVÂTH

2. For what grammars generating BH éléments of Më — <€$* can we compute
directly from the rules the corresponding p, q constants ?

3. Which of our results are valid for "Ogden's lemma" (see [13, 14]) too in
place of (the variants of) the BH lemma ? (Ogden's lemma is stronger than the BH
lemma.)
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