RAIRO
INFORMATIQUE THEORIQUE

HERMANN K.-G. WALTER
JOANNIS KEKLIKOGLOU

WERNER KERN

The behaviour of parsing time under
grammar morphisms

RAIRO — Informatique théorique, tome 12, n°2 (1978), p. 83-97.
<http://www.numdam.org/item?id=ITA_1978__12_2 83 0>

© AFCET, 1978, tous droits réservés.

L’acces aux archives de la revue « RAIRO — Informatique théorique » im-
plique I’accord avec les conditions générales d’utilisation (http:/www.numdam.
org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

‘NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1978__12_2_83_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

R.A.LR.O. Informatique théorique/Theoretical Computer Science
(vol. 12, n° 2, 1978, p. 83 a 97)

THE BEHAVIOUR OF PARSING TIME UNDER
GRAMMAR MORPHISMS (*)

by Hermann K.-G. WALTER (*) Joannis KekLikoGLOU (%)
and Werner Kern ()

Communicated by J. BERSTEL

Abstract. — We show that expanding transformations applied to context-free grammars
preserve parsing time (and space) in order of magnitude.

0. INTRODUCTION

Many problems related to grammars, languages, syntax analysis, etc. are
solved with the help of certain transformations of grammars (for example:
normal forms).

A great part of these transformations can be interpreted in such a way,
that they give rise to grammar morphisms with certain properties, especially
the property of preserving the generated language (Hotz [7, 8], Benson [2]).

With respect to context-free grammars grammar morphisms are one-state-
tree-transductions.

The aim of this paper is to discuss in which way the parsing time is carried
over if a grammar morphism is applied.

E. Bertsch [3] has shown, that parsing time is preserved applying strictly
length-preserving morphisms to context-free grammars. We generalize this
result to a class of grammar morphisms which is much more greater.

As a consequence we'll get the result that related context-free grammars (in
the sense of Hotz [7, 8]) have (asymptotically) the same parsing time.

1. GRAMMAR MORPHISMS

We use syntactical categories (X-categories) as a framework for our defini-
tional apparatus (G. Hotz [6], D. Benson [1]). If G = (Z, I, P, c) is a grammar

(*) Regu décembre 1977.

(*) Institut fiir Theoretische Informatik, Fachbereich Informatik, Technische Hochschule
Darmstadt, D-6100 Darmstadt

R.A.LR.O. Informatique théorique/Theoretical Computer Science, vol. 12, n° 2, 1978
2

84 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

with terminal alphabet X, intermediate alphabet 7, productionsystem P and
startsymbol o, we denote by S (G) the associated syntactical category. A
rough description of S (G) is the following:

Objects of S (G) are words over X U I, morphisms are the classes of iness-
entially different derivations. For convenience, we write fe S (G) to denote
that f is a derivation (class). If fe S (G), the functions d (domain) and ¢
(codomain) assign to f the word w (= d(f)) to which f is applied and the
word w’ (= ¢ (f)) which results by applying f.

Each fe€ S (G) has a definite length || f||. The derivations f with || f|| = 0
are the identities of S (G), which we identify with the corresponding objects.

S (G) is structured by two operations “o’” and “ x ’’, where “o”’ denotes the
concatenation and ‘X’ the parallel composition of derivations. It is well-
known that in the context-free case classes of derivations can be identified
with so called derivation trees.

The most interesting set of derivation is
D(G)={feS(G)|d(f)=0c and c(f)eZ*};
then the generated language is given by
2(G) =c(D(G)).

All details about syntactical categories can be found in Hotz [6],
D. Benson [1].

In this paper we only consider context-free grammars, though this restriction
is not necessary in any case.

DerFNiTION 1.1: Consider two grammars
Gl‘= (Zy, I, Py, 0y), G, = (Z;, I, Py, 6)).

A (grammar) morphism ¢ from G, to G, (¢ : G; — G,) is a pair ¢ = (9, ¢p),
where:

04 CGuI)*>(Eul)*

is a monoidhomomorphism and ¢, : P; — S (G,) is a mapping, such that the
following conditions hold:

(1) For all r(=p—¢g)eP;:

04(p)=d(ep(r)) and @,(q) =c(pp(r)),
2) ¢4(cy) =0y,

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 85

B o, U<k,
@ o, (Z) = Z}.

REMARK: Since it is not necessary to distinguish ¢, and ¢, by substripts
we shall omit these subscripts from now on. It can be shown, that'we' can
extend @ to a syntactical functor ¢ : S (G,) — S (G,) in a unique way. Using
this extension we get ¢ (D (G,)) < D (G,) and therefore ¢ (2 (G,)) < 2(G,).

One can single out various classes of morphisms. An overview of all these
classes is given in Walter [10]. We repeat those, which are necessary to ‘derive
our results. Again, some of our results are true for more general classes of
morphisms.

Consider ¢ : G, — G,. ¢ is called internal if £, =X, =X and ¢ (¢t) = ¢
for t € . @ is called closed if ¢ (D (G,)) = D (G,). A closed internal morphism
is called a transformation. If ¢ is a transformation, then € (G,) = £ (G,) holds,
i. e. the language is preserved. A morphism ¢ is expanding if || @ (r)|| 2 1
for all re Py; if [(r)|| =1 for all € P,, we call ¢ a fine morphism. A
fine transformation is called a reduction. Reynolds covers (Benson [2], Gray-
Harrison [5]) are reductions. Furthermore we get reductions by embedding
the theory of grammars as the generalisation of reductions of finite automata
(G. Hotz [8]). A second class of transformations is given by well-known
normal-form theorems like the binary form of a context-free grammar.
Roughly, such normal-form-theorems include constructions in which any
production is simulated by a certain derivation of the normal-form.

We want to formalize this property.

IfG = (3, I, P, o) is a grammar, then G’ = (X', I', P’, o’) is a subgrammar
of G(G"cG)if T cX I'cl, PSP o =o0.

Set-theoretic operations transfer to subgrammars in a natural way.

Let G be a grammar and M <= S (G). We denote by (M) the small(llest
subgrammar of G with M =€ S((M)). If M = {f} we write { M) = (.

Consider an expanding transformation @ : G, — G,. We call ¢ a simulation
if @ operates identically on /; and bijective between D (G,) and D (G,) and
if the following holds:

D <o(r)>n o (> <G, 1,,0,0) forallr, ¥ e P, with r # r';
(ii) for any r € P, there exists exactly one

r.e P({o())) with d(r,)el;.

We want to show, that we can restrict ourselves to simulations and reductions
if we are discussing transformations.

vol. 12, n°® 2, 1978

86 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

THEOREM 1: If ¢ : G, — G, is an expanding transformation, then there is a
Jactorisation @ = @, o @, such that @, is a simulation and ¢, is a reduction.

Proof: Part 1: “Construction of G5, ¢, : G; — G5 and ¢, : G; — G,”".

Consider re P, and a so called sequential representation of ¢ (r)
(G. Hotz [6]):

o) = Uy Xryxvg)o...o(uyXr, Xv,) (s=1).
We want to construct a set P (r) of rules “simulating” r. Consider for any
1Zis:
fi=@xr;xv)e...o(uyXryxv,)
and
Ji=(ugxrexvgo ... o(Uiyy X iyg X Vppq).

We determine inductively fF, P;(r), I;(r) and ¢,, ¢, with f¥ = ¢, (r),
P (r) = P(r) and f; = ¢, (f)

IfueX ul,, feS(G,) with d(f) = xuy, we say: u is unchanged under f

[relative to (x, y)] iff f = g, xux g, with d (g;) = x and d (g,) = y; otherwise
u is changed under f [relative to (x, y)].

Furthermore, if we (T U I,)*, then
w= yOE:Iyl e ‘tamym Wlth Yos -+ s ymeZ*a El’ AR QMEIZ‘
This ‘decomposition is called I-decomposition of w.
Initial step: Consider the I-decomposition of c(ry) =30 &; ... &nVm.
Let d(r) = § with @ (§) = d(r;). Now create to any &, which is changed

underf_1 relative to (#; Yo &1 -+ V1> 1 E+1 - - Ym V1) @ Dew letter &, (1, 7)
(1 £ A < m). If a &, is unchanged it corresponds to an unique &F in ¢ (7).
Define

g - gl(l’ r)s if gx is Changed,
. & otherwise.

Construct: . A .
P (r)= {&*%&1 cen E.)mym}’ B
I, () ={&.(1, r)|& is changed under f},
f1*=171><(%—>y0?;1 v gm.})m)xal,
0 G M) =8; 0(E) =0E).

Induction step: Suppose f¥_, I;_, (r), P;—y (r) are constructed for i > 1.
Consider u;d(r)v; and u;c(r;)v;. Then ¢ (f¥,) =utv withEel,_, (v),
0, (W) =u;, 0,() =v; and @, () =d(r).

R.A.L.R.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 87

Letc (r;) = yo M1 - .- N, Y, be the I-decomposition. Again, create to those n,

which are changed under f; relative (#; YoMy -« Yie1s Yo Mat1 -+~ Ma Va V2) @
new letter 1, (i,). An unchanged n, corresponds to an unique ny¥ in ¢ (r).
Denote by

~ . JmG,), if m, is changed under f_, ,
== 5, otherwise
and ;l' = ‘ta—’}’o ﬁl v ﬁnyn'
Construct:
P;(r)=P;_; (v {"i},
L) =L_;(Mu{n.(, r)|n, is changed under f,.}},
fi* =(&x;ixs)°fitls
(G N=m, () =0m)
By this construction we get for each r € P, a production set P (r) : = P, (),
an alphabet 7(r) : = I, (r) and a derivation [: = f*
Now define G5 and ¢, by:
MG :=E5Lv JI0, U PO, oy

repPy repP;
@) o, (r): =10
Part 2: “g, is a simulation and ¢, is a reduction”.
Obviously, for all r, r' € P;:

PO APIr)Y#0@ = [fO=f"

holds. Using this fact it is easy to see that ¢, is a simulation.

On the other hand ¢ = ¢, o @,. Since ¢ is surjective on D (G,), ¢, must be
surjective too. But this implies that ¢, is a reduction.

ReEMARK: The construction given above can be used to decide the property
“closed”’ for expanding internal ¢ : G; — G,. The algorithm works as follows:

Stage 1: Perform the factorisation ¢ = ¢, o ¢,, where ¢, is a simulation
and ¢, is length-preserving, i. e. @, (P,) < P,.

Stage 2: Decide with Schnorr’s algorithm [9], whether or not ¢, is a reduc-
tion. If the answer is “yes”’ then ¢ is closed, otherwise ¢ is not closed.

2. PARSING TIME AND INVERSE TRANSFORMATIONS

In this section we want to derive the main result. Consider a grammar
Gy =, I, P,). As analysers we use Turing machines which—faced with

vol. 12, n°® 2, 1978

88 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

w € X*—produce a derivation whenever it is possible and a failure-message
if not, that means if w ¢ £ (G).

We indicate in which form the output is performed. We assign to any
derivation f a representation fwhich is in its essence the preorder representation
of the corresponding derivation tree, more formally:

Consider to each & e I a pair of brackets [,].

Let feS (G): |e
O =0=>f=u:f=u;
@) | f]| =1=/f=ux(E—>w)xuv:
f=u[w]v;
g &
i) ||f]] > 1= f = (uxrxv)ofy; with
fl=u'd(r)v'.
Define
f_=u'7'v'.

REMARK 1: It is easy to see that f is well-defined.

REMARK 2: As usual we can define the bracketing depth bd (f).

Now, our analyser—faced with w—should produce f with d (f) = ¢ and
¢ (f) = w if such an f exists, otherwise the relation w ¢ £ (G) should be
indicated by producing a special signal.

Given such an analyser U, we can define the time function Ty (w) as
usual. Note that always

if f— is the output to the input w.

THEOREM 2: If ¢ : G, — G, is an expanding transformation and g, is an
analyser such that
Tys,w) S F(|w|) (weX¥),

where F:Z, — Z, is a function, then there is a constant ¢ and an analyser
UG, such that
Tgal(w)gc.Fdwl) (weZ¥).

Proof: By theorem 1 we can factorize ¢ = @, o @, with @, a reduction and ¢,
a simulation. E. Bertsch has shown that the result is true for reductions [3].
Thus the theorem follows if we can show the result under the additional
assumption that ¢ is a simulation.

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 89

To prove this we first show:

Consider an expanding morphism ¢ : G; — G,, which operates identically
on /;. Suppose, for every re P, there exists exactly one r,e€ P (¢ (r)))
with d (r,) € I,. Define the homomorphism % by

h(X)= 'D’ if xe{g’é”§612_11 }’
X, otherwise.
Then for any fe S (G,) with d(f)el;:

k) h@(f) =/ holds.
Proof by induction on || f||:

l “Ifl|=1" then f=reP,.
We show the assertion by induction on bd ((p_(r)):
“bd (p(r)) = 1”7 then @(r)eP,
and therefore ¢ (r) = r (¢ operates identically on X v I;!), which proves

the assertion.

Consider the case “bd(p(r)) =t >1":
First observe r = [c(r)] .
o am 4
Since d (¢ (r)) = d (r) and ¢ (¢ (r)) = ¢ (r) we can decompose ¢ (r) = g
in the following way

g=vo[ug]vy... [wx] o,
€1 & & Tk

where uy, ..., yp€(l; U Z)* and
Vo, ...,vke(IluEu{[g]glﬁeIZ})*

and v; contains no word of the form [u],
£ &

ue(l;I)* for j=0,... k.

Now, define G, and ¢’ as follows:
Eliminate the rules &; — u, by substituting &; by u; in all predecessor rules
of P({ @ (r))). We obtain G, g changes into a derivation g'e€ S (G}) with

g =vouyvy...uv, and bd(g)=<t-—-1.
Define ¢’ : G; — G, by

v) 8 if r=r,
¥)= {(p (r) otherwise,

again @' fulfills the presumptions, as before define 4’ for G.

vol. 12, n° 2, 1978

90 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

It is seen immediately that:
() g =vou viuy ... 0yt
(i) bd(g') < bd (g);
(iii) A’ (g") = h(g) holds.
By the induction hypothesis we get £(g) = h'(g") = r.
Induction step:

“Nril=s-1 = |[5]l=s"
Observe that

JF=@xrxv)ef, with reP,, f,€S(Gy).
Thenf_is obtained fromfo by substituting d (r) by r using the decomposition
]b = w, d (r) w, with appropriate w,, w,.
Applying ¢ to f we get
o (f) =uxe @) x0)°0(fo)

By our assumption we get
o(f) =wio(r)w;

and ¢ (f,) = w)d (r)w), with appropriate w}, w),. By this ¢ (f) is obtained
from @ (f;,) by substituting d (r) by ¢ (r).
Application of h yields:

h (W, d(r)wh) =, d(r)®, = f, (induction hypothesis)

and
h(e() =T.
But then
’7’1 =w; = h(wy) and l7’2 = w, = h(w}),
we get

R(@(f) = wy h(@() w, = w, 7w, = f
and the proof of (¥) is complete.

Now, we are able to design the analyser s,.

Consider an input w € I*.

Stage 1: Using W, produce f with d(f) =0, and c(f) =w if
we £ (G,) = £(G,). Otherwise U, indicates that w ¢ £ (G,), and U, gives
a message that w ¢ 8 (G,).

Stage 2: Compute & (f).

R.A.LLR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 91

By the above assertion, we get

h(H)=h(@@ M =907

[0~ (f) exists and is a derivation of w in D (G,)!].
This proves that the algorithm s is correct.

To perform stage 1 we need time
Tuo, () S F(|w]).
To perform stage 2 we need time

T .|f]
with a constant c¢’.

Since A, has to produce the output f we get

|f| < Tﬂgz(w)'
Combining both we get

Tag, (W) < Ty, (W) +¢". Ty, (0) S (c'+1). F([w|)-

But this proves our result.

3. PARSING TIME AND TRANSFORMATIONS

Now we will show a converse result:

If ¢ : G; — G, is a expanding transformation, then from the analyzability
of (G, in time = f (l w |) it results that £ (G,) is analyzable in time
< cf(|w|). First we show this for reductions and then for simylations.
Then by theorem 1 the result also holds for expanding transformations.

PROPOSITION: Let ¢ : Gy — G, be a reduction, W, an analyser for £ (G,)
with

Tao, @) S F(|w]) (weE*),

where F : Z, — Z . is a function, then there is a constant ¢ and an analyzer
g, for £(G,) such that

ngz(w) §;c.F(|w:|).§

Proof: We remark that w e 8 (G,) < ¢ (w) = we L (G,). Let be fe D (G,)
with d (f) = o, and ¢ (f) = w and f defined as in 2.

vol. 12, n° 2, 1978

92 H. K.-G. WALTER, J. KEKLIKOGLOU, W, KERN

Consider the homomorphism g defined by
o (x) if xeXul,,

if x=[, &el,,
g(x) = wgﬁ) E tely
] if x=], &EIl.

Y6 3

Then it is easy to see that

(k%) g(f) =0 (f).

Now we construct the analyser g, in the same way as in theorem 2 with the
homomorphism g instead of A. Using (Y%) instead of (¥) the assertion
follows by the same argument.

To prove a similar result for ¢ being a simulation, we require_that g
analysing w € £ (G,) gives an output ﬁ which is again a parenthesis-represen-

tation of a derivation f but contains some more information about the used
rules:

Consider a grammar G and to each £ € I and each r € P a pair of brackets

[.1
L
Let fe S (G) then:
@ [|7]| =o:
f—lu’ ;=u,
@ |I7 =1

f=uxrxuo, f:=u[c(r)]v;
(iii) ||f]] > U'=f = (uxrxv)efy; with

f_'1=u’d(r)v'
define
f—=u';v’.
For abbreviation we set
P r
L ={[P,el,reP}
I 3
and
P r
}: ={] Eel, reP}.
I 3

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 93

Now we assume, that an analyzer s, produces this parenthesis-represen-
tation of a derivation if possible.
The role of the homomorphisms 4 respective g in the proofs of theorem 2

and 3'is played by a pushdown-transducer which transduces f into ¢ (f) for
f€ D (G,). We use the conception of a pdt as given in [4].

THEOREM 3: Let ¢ : G, — G, be a simulation, s, an analyzer with
TQlGl(w)gF('wl)y wez*’
where F:Z, — Z, is a function, then there exists an analyzer WUg, and a

constant ¢ with
Twcz(w)gc.F(]w]).

Proof: First we construct a one-state-pdt p which transduces f into @ (f) for
an arbitrary fe D (Gy):

Py Py P, P
I,=Xuvlu[u], 0,=Xvl,u[u],
Iy Iy I Iz

S,={s}; ,=0,U8$, ko=%, so=s and 3§,

defined as follows:
Initialisation of the pushdown store:
8p(x’ S, $) = (S, ’Y$’ x,)3

r

Py —=
x=[el, *yv=o0@);
d(ry Iy

output of an symbol in ¢ (f):

(%, 8, 9)=(s,0,¥5) x=yeZul,;

output of symbols of simulation rules:
Py P2

SP(D’S’ ,V)=(Sa 0, ,V), Y€ [v] >
In—1, In—14
storing the simulated rule (F(_r) instead of d (r) of the top at the pushdown

store, producing the first parenthesis x’ of ¢ (r) as output:

r P1
3,(x, 5, ¥)=(s, 7, x), x=[e[, y =d(r),
d(ry I
o(r)=x"y.
Let Fp : I} — O} be the realized transduction, then
(S H k) feD(G) = F,(f)=0(f) holds.

vol. 12, n° 2, 1978

94 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

We give a short idea how to prove this: (induction on s = || f|]):
@) «||f|| = 1"’ then f = r holds and we can verify:
(s, [eM].8, D)I—(s, cr) 1,78 [')I— = (s, O, 8, 0(0),
) aw P aw an/ P
analoguous we get

(s, 7, d(r)v, O) E (s O, o (),
which we need in (ii).
@ “|| | =s—1=||f]] ="
Let be || f|] =s > 1 then f = (uxrxv)ofy, ||f1 || =s—1.

We can decompose f—', o (), fl, o (f,) as follows:

f: u':v', (ﬁ — unﬁvn

fi=wd@®v, o(f)=u"d)v"

p transduces u’ d (r) v’ into u” d (r) v” by induction hypothesis, then one can
show using the construction of p:

Gudnv,$,DH+...—(s,d)v,d(r)y8, u")
P I 4

[d (r) is at the top of the pushdown store because it is the next output symbol]:
I; (s, v, v$, u"d(mM) ... }; (s, O, 8, u"d(r)v").
P
Then also
G, u'rv, $, D ...—(s, rv', d(r)y$, u”) holds.
1 4 P

Now we can insert the computation on 7 using part (i):
(s, 10, ()Y, u) ... (5, 0,8, u"0(r)
14 14
and again using the induction hypothesis continuing the computation like
that of flr

.. (s, O, 8, 0" ("),
P p

which proves the assertion.

Now we construct the analyzer %, similar to that of theorems 2 and 3:
Given an input w e X*.

R.A.LR.O, Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 95

Stage 1: Using A;, produce ff fe D(G,), with
d(fy=0y, c(NHN=w if wel(Gy)=2(Gy),
or a failure message if w¢ 2 (G,).

Stage 2: Compute F, (f).
Again the assertion follows with the same argument as in the proofs before,

if one has in mind that Ty (;) < | ¢ (f) | (at each step p produces one output
symbol!) and | ¢ (f) | £ c’.lfl with ¢! =2max {||e (D || |reP, }.
ReMARK 1: If G, and G, are linear grammars we can perform the transduction

j?—> ¢ (f) by an homomorphism.
Proof: All rules of G,, G, are of the form

E-sunv, u, veXl*,
or
£ —w, weZ*.

Consider r = (§ —unv), nel; U {[} then
O(r)=(Uyg ... Uy XTgXVgq ... 0)0...0(Uy Xy X0y)e([]xryx[])
with
ri=E—=u&qv), 15iss,
E,=¢&, Ecr1 =M and Uy ... U, =1u, Vg...0 =0,
It follows immediately that
—_— ry r2 rs rs r
oM =[u[u,...[umvs]v,_y...0,] holds.
3 82 Es & 13
Let be
ry rs
u()=[ug... [y,
3 Es
r

v(r) = v,r:s] o]
&s

3
and define a homomorphism f, as follows:

x if xel,,
O if xeZX,
r Py
fL={u@ if x=1[¢€l[,
dr) Iy
r Py
v if x=]€].
d(ry I

vol. 12, n° 2, 1978

96 H. K.-G. WALTER, J. KEKLIKOGLOU, W. KERN

Then it is easy to see, that for fe D (G,):

£,(NH=0() holds.

REeMARK 2: With remark 1 we have seen, that the transduction of derivations
in G, into derivations in G, can be done by a device which is less powerful
than the device which is used for analyzing. That means: a deterministic pdt
for context-free languages, which require a non-deterministic pda for analyzing,
and an finite state-transducer (to perform the homomorphisms) in the case
of linear grammars.

4. CONCLUDING REMARKS

We give some comments to our results.

REMARK 1: As indicated in the introduction expanding transformations are
induced by certain wellknown normal-form theorems. The binary form of
context-free grammars and the elimination of e-rules in a context-free grammar
are of this type.

Therefore we can conclude (with some minor addition to our proofs in the
latter case) that parsing time remains unchanged under both constructions.

REMARK 2: We can deal with parsing space too. If the space definition
includes the output tape all the constructions, both Bertsch’s and ours, preserve
space. (For theorem 3 one should have in mind that the maximal length of the
pushdown store of the pdt p does not exceed the output length.) Therefore
parsing space remains unchanged in order of magnitude under inverse
expanding transformations and expanding transformations.

REFERENCES

1. D. B. BeNsON, The Basic Algebraic Structures in Categories of Derivations,
Inform. and Control, Vol. 28, 1975, pp. 1-29.

2. D. B. BENSON, Some Preservation Properties of Normal Form Grammars,
S.1.AM. J. Comput., Vol. 6, No. 2, June 1977, pp. 381-402.

3. E. BERTSCH, An Observation on Relative Parsing Time, J.A.C.M., Vol. 22, No. 4,
October 1975, pp. 493-498.

4. S. GINSBURG, The Mathematical Theory of Contextfree Languages, 1966,
McGraw-Hill, New York.

5. J. N. Gray and M. A. HARRISON, On the Covering and Reduction Problems
for Contextfree Grammars, J.A.C.M., Vol. 19, 1972, pp. 675-698.

6. G. Hotz, Eindeutigheit und Mehrdeutigheit formaler Sprachen, E1K., Vol. 2,
1966, pp. 235-246.

R.A.LR.O. Informatique théorique/Theoretical Computer Science

THE BEHAVIOUR OF PARSING TIME UNDER GRAMMAR MORPHISMS 97

7. G. Horz, Homomorphie und Aquivalenz formaler Sprachen, 3. Kolloquium iiber

Automatentheorie, W. HANDLER, E. PEscHL, H. UNser, Eds., Birkhduser-Verlag,
1967.

8. G. Hotrz, Ubertragung automatentheoretischer Sitze auf Chomsky-Sprachens
Computing, Vol. 4, 1969, pp. 30-42.

9. C.-P.. SCHNORR, Vier Entscheidbarkeitsprobleme fiir kontextsensitive Sprachen,
Computing, Vol. 3, 1968, pp. 311-317.

10. H. WALTER, Die Verwandtschaft kontextfreier Grammatiken (to appear).

vol. 12, n° 2, 1978

