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CODES, LANGUAGES AND MOL SCHEMES (*)

H. J. SHYR and G. THIERRIN (*)

Communicated by J.-F. PERROT

Abstract. — The aim of this paper is to introducé and study a new class of DOL schemes,
called MOL schemes. These are characterized by means of the OL languages they generate
and by their préservation properties. Several special cases are investigated.

1. INTRODUCTION.

Let X be an alphabet (a non-empty finite set) and let X* be the f ree monoid
generated by X. Let X+ = X* — { 1 }, where 1 is the empty word and let lg (w)
dénote the lengt h of the word w e l * . Any subset of X* is called a language.

For any languages A, B ç X*, let AB = { xy \ x e A, y e B }, A* = Q Al

oo i = 0
and A+ = [j Al (1-free itération).

A OL scheme (see [1]) is an ordered pair (X, P ) , where X is an alphabet
and P (the set of productions) is a finite non-empty subset of l x X* such that
for any ae X, there exists at least one xe X* such that (a, x) E P. Sometimes
the notation a—*xeP will be used instead of (a, x) e P. A OL scheme is
deterministic if for every ae X, the element x e X* such that 0 —• xe P is
unique and it is propagating if for every a—+xeP, x ^ 1. The words DOL
and PDOL will be used to represent the deterministic OL schemes and the
propagating deterministic OL schemes respectively. If (X, P ) is a OL scheme
and if x = at a2 . . . am, m ^ 0, ate X, i = 1,2, . . . , m and y e X *, then x
is said to directly generate or dérive y in (X, P ), denoted by x => y, if and
only if there exist yu y2, . . . , j>w such that { Ö. —•ƒ. | ƒ = 1, 2, . . . , m }
and y = y1 y2 . . . j m . By this définition 1 directly dérives j> if and only if

y = 1. The transitive and reflexive closure of the relation => is denoted by =>.

When x =S- y then x is said to generate y in (X, P). A OL system is
a triple (X, />, u?), where (X, P) is a OL scheme and w e X *, called the
axiom of (X, P, u>); (X, P) is called the scheme of (X, P, w). The language

L (X, P, w) = { y e X * | w X y } is called the OL language generated by
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(X, P, w); the notation L(w) will also be used when there is no ambiguity
concerning the scheme (X, P). A language A is said to be a OL language if
there èxists a OL System (X, P, w) such that A is generated by (X, P, w).

A mapping h of X* into Z* such that h (xy) = h (x) h (y) for ail x, y e X * is
said to be a homomorphism of X* into X* or an endomorphism of X*. If
furthermore h is injective, i. e., if h (x) = h (y) implies x = y, then h is said to
be a monomorphism. If (Jf, P ) is a DOL scheme, then the mapping /z defined
by h (at) = xt, where at-^> xte P détermines a homomorphism of X* into X*.
Conversely, every homomorphism h of X* into X* defines a DOL scheme
(X, P ) where at -* xte P if and only if h (at) = x(. It follows that a DOL
scheme can be defined either by (X, P ) or (X, h). In this paper we will use
mainly the second définition. If (X, P, w) is a DOL System, then with the
notation (X, h, w), the DOL language L (w) generated by the System is given
by L (w) = { h" (w) | n ^ 0 }. If J^ is a family of languages over X and if
h (A) e 3F for every A e 3F, then we say that the DOL scheme (X, h)preserves 3F
or that (X, h) is J^-preserving.

A MOL scheme (X, h) is a DOL scheme such that h is a monomorphism.
It is immédiate that a MOL scheme is always a PDOL scheme, but the converse
is not true. Let us remark that a DOL scheme (X, h) such that | X \ = 1 is
always a MOL scheme, unless h (X) = { 1 }. A DOL System (Z, h, w) such
that (X, h) is a MOL scheme is called a MOL system and the language
L (X, h, w) is called a MOL language. The purpose of this paper is to establish
some properties of the MOL schemes. In section 2, we characterize MOL
schemes by using the properties of the OL languages generated by their
associated OL Systems and we give a biological interprétation of some of these
results. In section 3, the characterization of MOL schemes is done by conside-
ring some classes of languages which they preserve, and the last section is
concerned mainly with the study of particular classes of MOL schemes.

2. MOL SCHEMES AND LANGUAGES

PROPOSITION 1 : Let (X, h) be a MOL scheme. IfL (X, h, wx) n L (X9 h,w2) ¥= 0 ,
then either L (X, h, w^ ç L (X, h, w2) or vice versa.

Proof: There exist m, n ^ 0 such that hm (wt) = hn (w2). If m = n, then
wx = tv2 and L (wx) = L (w2). Let m < n, n = m+k9 k ^ 1. Then
hm (wj = hm+k (w2) and hm (w,) = hm (hk (w2)). Hence wx = hk (w2) and
L (w,) ç L (w2). #

Let us remark that if (X, h) is a MOL scheme, then L (X, h, wx) ç= L (X, h, w2)
if and only if w1 = hk (w2) for some k ^ 0.

PROPOSITION 2: A PDOL scheme (X, h) is a MOL scheme if and
only if L (X, h, wx) n L (X, h, w2) ^ 0 , wl9 w2 e X + , implies either
L (X9 h, u^) ç L (X, h, w2) or vice versa.
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Proof: Necessity. This is Proposition 1. Sufficiency. Suppose h is not injective.
Then there exist v, w e X + , v ^ w, such that h(v) = h (w). It follows then
that L(v) n L (w) # 0 and hence either L(v) ç L (w) or L (w) ^ L (v). Let us
suppose L (w) ç L (f). Then Ak (f) = u; for sortie k ^ 1 and hk + 1 (v) = h (w) = /z (t;).
Let X(w) = {x \x e X, x is a subword of u; }. Since hk+1 (v) = /z (v)9 then
7zk (w) = w and /g (/z (x)) = 1 for every x e X (w) ^ X.

We claim that if x, y e X (w) and h (x) = h (y), then x = y. Suppose on
the contrary x ^ y and h (x) = h (y) = a G X. Then /z (;tyx) = a3 = h (yxy)
and L (xyx) n L (yxy) # 0 . Hence L (xjx) ç L (jxj) or vice versa. Suppose
the flrst case: then since xyx ^ yxy, we have xyx = hk (yxy) for sortie k ^ 1.
Therefore, /zk (yxy) = u3 for sortie u and xyx = w3, a contradiction. The second
case is also impossible.

Now if X (v) ç X (w), then /? (i;) = /z (w;) implies v = w, a. contradiction.
Hence X (v) cj: X(u;) and there exists z G X such that z e X (v), z $ X (w).
Therefore v = v1 zv2 and h (v) = h (vx) h (z) h (v2). Since h (x) G A'for x G X(U;)
and since h (v) = h (w), it follows then that w can be written in the form
w = J i yyi where h (y) = h (z) = d. We have h (zyz) = d3 = h (yzy) and
L (zyz) n L (yzy) ^ 0 . Hence L (zyz) ç L (>>zy) or v/c^ v^r^. Suppose the
flrst case: then zyz = hk {yzy), for some k ^ 1 and zyz = t3 for some / e l + .
Since z <£ X(u;), then z <£ X(y) and the equality zyz = t3 is impossible. By the
same argument we can show that the second case is also impossible. #

The following biological interprétation can be given of the preceding pro-
position. Let us suppose that we have two organisms which are developing
according to the same DOL scheme (X, h). Then the scheme (X, h) is a MOL
scheme if and only if either of these two órganisms have a completely different
development or one of them can be considered as the descendant of the other.

Let (X, h) be a DOL scheme. Deflne on X* the relation H by
x H y o hm (x) = hn (y) for some m, n ^ 0. This relation is clearly an équi-
valence relation. Let us dénote by H (x) the class of x. Every OL language
with scheme (X, h) is contained in a class of H.

If (X, h) is a MOL scheme, then hm (w^ = hn (w2), m ^ n, implies
wl = hn~m (w2). Therefore v H w if and only if there exists n ^ 0 such that
either v = hn (w) or w = hn (v).

PROPOSITION 3 : A PDOL scheme (X, h) is a MOL scheme if and only if every
class of H is a OL language.

Proof: Necessity. Let A be a class of H. If 1 G A, then A = { 1 } and
A = L (X, h, 1). Let 1 £ A and let B be the set of the words of minimal length
in A. For every pair wl9 w2 e B, then either wl = hn (w2) or w2 = hn (Wi) for
some n ^ 0. Since B is finite, there exists v e B such that, for any
weB, w = hn (v) for some n ^ 0. Let u e A, u $ B; then hm (u) = hn (v) for
some m, n ^ 0. Since (X, h) is propagating, then m ^ n and u = hn~m (v).
Therefore A = L (X, h, v).

vol. 11, n° 4, 1977
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Sufficiency. Suppose L (X, h, wx) n L (X, h, w2) ^ 0 with wl9 w2eX+.
Then, since each OL language with scheme (X, h)'is contained in a class
of H, L (X, h, wx) and L (X, h, w2) are contained in the same class A of H.
But A = L (X, h, v) for some v e X +. Hence w1 = hm (v), w2 = hn (v) for
sorme m, n ^ 0. Suppose n = m+k, k ^ 0. Then w2 = hm+k (v) = hk (u^).
Therefore L (X, h, w2) s L (X, h, wt) and (X, h) is a MOL scheme by
Proposition 2. #

A OL language L with DOL scheme (X, h) is said to be maximal if the
inclusion L ç L\ where L' is a OL language with the same scheme (X, h),
implies L = L'.

If (X, h) is a PDOL scheme, it is easy to see that every OL language with
scheme (X9 h) is contained in at least a maximal one. The following example
shows that in gênerai there can be several distinct maximal OL languages
containing the same OL language.

Let X = { a, b }, h (a) = ab, h (b) = ab. Then L (X9 h, a) and L (X, h, b)
are distinct maximal OL languages containing the OL language L (X, h, ab)
with the PDOL scheme (Jf, h).

PROPOSITION 4: A PDOL scheme (X, h) is a MOL scheme if and only if
every OL language L with scheme (X, h) is contained in a unique maximal OL
language with the same scheme.

Proof: Necessity. Since (X, h) is a PDOL scheme, L is contained in at least
one maximal OL language. Let M1 and M2 be two maximal OL languages
containing L. Then L c Mt n Ml9 and by Proposition 2, M1 ç M2 or
M2 ^ Mx. Hence Mx = M2.

Sufficiency. Let A be a class of //, A # { 1 } and let v e A. Then L (X, h, v) ̂  A
and there is a unique maximal OL language M such that L (X, h, v) ç M. It
is immédiate that M ç= A. Suppose M ^ A. Then there exists w e A, w $ M.
Since v H w, then /*m (r) = /*" (w) = w for some «, m ^ 0. Therefore
M 6 L (X, h, v) ç M and w e L (X /z, w;) <£ M. Let M' be the unique maximal
OL language containing L (X, h, w). Since u e L (X, h, w), we have L (X, h,u)^M
and L (X, h, u) c M\ a contradiction. Hence M = A and every class of H
is a OL language. By Proposition 3, it follows then that (X, h) is a MOL
scheme. #

3. CODES AND MOL SCHEMES

A non-empty language A ç X + is said to be a cööfe if at a2 ... a„ = bt b2 ... ftm,
w ^ 1, n ^ 1 anda f , 6,6,4 implies « = m anda f = bi9 i = 1, 2,..., «. A code A
is called a prefix code if ^ n AX+ = 0 . (see [4]). The relation pc defined on X*
by x Pc y if a n d only if y = xu = ux for some M e X * is a partial order and a
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non-empty language A ç X + is called ^^independent if for any x, y e A,
x pc y implies x = y (see [8]).

PROPOSITION 5 : Every DOL scheme (X, h) that is code preserving is propa-
gating.

Proof: For any a e X, h (a) # 1, because { a } is a code but { 1 } is not. #

PROPOSITION 6: A DOL scheme (X, h) is a code preserving scheme if and only
if (X, h) is a MOL scheme.

Proof: Suppose first that (X, h) is code preserving. Then h (X) is a code.
Moreover, ifai9 a} e X, at # aj9 then h (at) =£ h (cij). Indeed, if h (at) = h (a3) = c,
then A = { at, aj } is a code but not /z (^) = { c, c2 }, a contradiction. Now
if /* is not injective, then there exist x ^ y, x, y e X + such that h (x) = h (y).
Let

x = xt ... xm, y = yl y2 - • • yn, m ^ 1, n ^ 1 and x ,̂ yjeX;

then
M*!) . . . h(xm) = h(x) = h(y) = h(yi) . . . h(yH).

Since h (X) is a code, we have m = « and Zz (x^) = /z (j,), / = 1,2, . . . , « .
This implies that xf = j>f, / = 1, 2, . ..,w and x = y holds, a contradiction.

Suppose now that (X, h) is a MOL scheme and that (X, h) is not code
preserving. Then there exists a code A over X such that h (A) is not a code,
and therefore x1? x2, . . . , * „ , j>i, J2? • • •> Jm G ^» xi ^ ^i such that

This implies that
ft(jCi . . . x n ) = h ( y 1 . . . y m ) .

Since /z is injective, we have xx ... xn = yt . . . j m . It follows then that
xx = j x and since A is, by assumption, a code, a contradiction. #

PROPOSITION 7: 4̂ Z>0L scheme (X, h) is a MOL scheme if and only ifh(X)
is a code and \h(X)\ = \X |.

Proof: Necessity. This follows immediately from Proposition 6.
Sufficiency. Suppose that h is not injective. Since h(X) is a code, then 1

and there exist x, y e X +
9 x ¥" y, such that h(x) = h (y). Let

Then
/i(x!X2 . . . xm) = h(y1y2 ... yn)

and
fc(*i)M*2) • • • h(xm) = h(yi)h(y2) . . . h(yn).

vol. 11, n° 4, 1977
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Since h (X) is a code by assumption, we have n = m and

h(xi) = h(yi) for ail i = 1, 2, . . . , n .

Since | A (X) 1 = 1^1, and Xis finite we have xt = yi for al) / = 1,2, . . . , n.
Thus x = j>, a contradiction. Hence A is injective and (X, A) is a MOL
scheme. #

If A c X + , y4 ^ 0 , then ^ is pc-independent if and only if every pair of
two distinct éléments from A form a code (see [8]). We note that for any
x, y e X +, { x, y } is a code if and only if xy ^ yx.

PROPOSITION 8: A DOL scheme (X, h) is a MOL scheme if and only if(X, h)
preserve the ^^independent languages.

Proof: Necessity. Let A ç X + be a pc-independent language. Suppose h {A)
is not pc-independant. Then there exist x, y e A, x ^ y such that { h (x), h (y) }
is not a code.

This implies that A (x) h (y) = h (y) h (x) and h (xy) = h (yx) hods. Since h
is injective by assumption, we have xy = yx. This contradicts the fact thât A
is a pc-independent language.

Sufficiency. Suppose that h is not injective. Then there exist x, y e X+
9 x # y,

such that

h(x) = h (y) = z, z ^ 1, and /z (xj>) = A (yx) = z2.

Now if xy = jx , then

x = pn, y — pm for some peX+, and m ^ 1, n ^ 1.

Since [A (/?)]" = h(x) = h (y) = [A (/?)]m # 1, we have « = m, a contra-
diction. On the other hand, if x j ^ jx , then { x, y } is a code. The set
A = { x, xy } is then a code, but A (x) = z, A (xj>) = z2 and so { A (x), A (xy) }
is not a code, again a contradiction. #

4. SPECIAL CLASSES OF MOL SCHEMES

In this section, we consider M O L schemes which preserve special classes of
languages.

Let us recall that a language A over X is said to be a right power-bounded
language if there exists a positive integer n such that yxm EA,X^ 1 implies that
m ^ n (see, [9]).

PROPOSITION 9 : L ^ (JT, A) Z>e Ö DOL scAeme such that h (X) * { 1 }. If(X, h)
is a scheme which preserves the regular right power-bounded languages, then
(X, h) is a MOL scheme.

Proof: First we show that for any a e X, h (a) ^ 1. Suppose A (a) = 1 ; then
there exists b e X such that A (b) ^ 1, since h(X) ^ {1} by assumption. The
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language A = {bn a\n^ 1} is a, regular right power-bounded language, but
h (A) = { h (b))n | n ̂  1 } is not a right power-bounded language, a contra-
diction. Thus h(a) ^ 1, for ail a e X.

Now suppose h is not injective. Then h(x) = h (y), x ̂  y, for some x, yeX+.
We can choose x and y such that x = azl9 y = bz2, a ̂  b, a, b e X and
zl9z2eX*.

Then h (x) = h (a) h (zj) = h (y) = h (b) h (z2). We may assume
Ig {h (a)) ̂  Ig (h (b)). Let h (a) = v, h (b) = w. Then w = vu for some u = X*.
The language A = {bna\n^\}isa regular right power-bounded language,
but h (A) = { (vu)n v | n ̂  1 } = { v (uv)n \ n ̂  1 } is not a right power-
bounded language, a contradiction. #

The converse of this Proposition is false. For example, let (X, h) be a DOL
scheme such that X = { a, b }, h (a) = ba, h (b) = b. Let A = { an b \ n ̂  1 }.
Then | h (X) | = \X\ and Zz (X) is a code. Hence by Proposition 7, (X, /i) is
a MOL scheme. But h (A) = { ((baf b \ n ̂  1 } = { b (ab)n \ n ̂  1 } is not
a right power-bounded language while A is.

PROPOSITION 10: Let (X, h) be a DOL scheme such that | h (X) | = | X\.
Then h (X) is a prefix code if and only if(X9 h) is a scheme which preserves the
prefix codes.

Proof: Sufficiency. Trivial.
Necessity. Let A be a prefix code. We have to show that h {A) is also a

prefix code. The case | h (A) | = 1 is trivial. Suppose that | h (A) | ̂  2 and let
p 7̂  q G h (A). Then there exist w, v e A such that h (u) = p, h (v) = q. Let
M = WX u2 ... un9 v = vt v2 ... vm9 ut, Vj e X. Sincew! u2 ... wn 1

there exists k ̂  1 such that wk ̂  ^ and ut = vt for ail / < k. Since

p = h(u) = h(u1) . . . h(uk_l)h(uk)h(uk + 1 . . . wB),

+ 1 ••• vm)9 h(ut) = h(vt)

for ail i < k and { h (uk), h (vk) } a prefix code by assumption, then { p, q } is
a prefix code. Therefore h (A) is a prefix code. #

A word w e X+ is called a primitive word if w = pn, p e X +, implies n = 1.
It is well known that for any xe X + , there exists a unique primitive word/?
and n ̂  1 such that x = pn. Let g = { / ? G J i L r + | / 7 i s a primitive word },

gd) = g u { 1 } and g ( l ) = { ^ > e Ö } , ^ 2 . Then X* = Q Q(i) and

gco n QU) = 0 i f f # y- ( 5 ^ [3]). if x = ̂ «, ̂  e g, then ^/x = /j'iVcalled /te

roo/ o/ x. In particular ^J\ = L A language y4 ç J * is called /?«/•£ if for any

xeA*, JxeA*.
A language A ç= X * is called noncounting {left-noncounting) if there exists

A: ̂  1 such that uxk v e A if and only if uxk+1 v e A, (pâ v e A if and only if

vol. 11, n° 4, 1977



300 H. J. SHYR, G. THIERRIN

xk+1 v e A) for ail u, x, v e X*. A language A ^ X * is said to be a power-
separating language if there exists k ^ 1, called the order of A, such that for
any x e X* either x* x* ç ^ or ^ JC* n y4 = 0 . Every noncounting language
is left-noncounting and every left-noncounting language is power-separating,
but the converse is not true (see [6], [7]).

In [5], Restivo has shown that a finite code A ç X* is pure if and only
if A* is a noncounting language. In order to extend this resuit, let us recall
that a language A ç X* is a code if and only if ƒ G X*, f A* n A* n A* f ^ 0
implies ƒ G A*. From this, it follows that if A is a code, then xn and xn+r e A*
imply xr e A*.

PROPOSITION 11: Let A ^ X* be a finite code. Then the following are equi-
valent:

(1) A is pure;

(2) v4* is a power-separating language;
(3) A* is a left-noncounting language.

Proof: (1) implies (3). Suppose A is pure. Then A* is a noncounting language
(see [5]) and hence a left-noncounting language.

(3) implies (2). Immédiate.
(2) implies (1). Suppose that A is not pure. Then there exists a word x e A*

such that x = pk, k > 1 and p $ A*. Thus pn e A* for ail n = kr, r ^ 1.
Since y4 is a code by assumption and since p$A*, then /?n+1^^4*. This
implies that A* is not a power-separating language. #

A DOL scheme (X, h) is said to be a scheme preserving the primitive words,
if for any primitive word/? e l + , h (p) is a primitive word. i. e., if h (Q) ç= Q.

PROPOSITION 12: Every MOL scheme (X, h) such that h(X) is a pure code,
preserves the primitive words.

Proof: Let g e Q. Then h (g) = pne[h (JT)]* ç X*, where /? G Q. Since
/* (X) is pure by assumption, we have p e [h (X)]*. It follows then that for
some x e P , h (x) = p and h (xn) = pn = h (g). Since (X, h) is a MOL
scheme, then h is injective and g = xn. Since g e Q, we have w = 1. Thus Zz (g)
is a primitive word. #

The MOL scheme (X, h), where X = { a, 6 } and h (a) = ab, h (b) = ba,
is an example of a MOL scheme preserving the primitive words.

PROPOSITION 13: Every MOL scheme (X, h) such that h (X) is a pure code,
preserves the pure language s.

Proof: Let A be a pure language and let pn G [h 04)]*, p e Q. Then there
exists xeA* such that h (x) = pn and x = qm, q e Q. This implies that
pn = h (qm) = [h (#)]m. Since h (X) is a pure code, then by Proposition 12,
h (q) is a primitive word. Hence n = m and p = h (q). Since 4̂ is pure, then
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x = qmeA* implies that q e A* and p = h (q) e [h 04)]*. Therefore h (A) is
pure. #

PROPOSITION 14: Every MOL scheme, such that h(X) is apure code, preserves
the power-separating languages.

Proof: Since h (X) is a pure code, then by Proposition 11, [A (X)~\* = h (X*)
is a power-separating language, say of order ra. Then, by définition, for any
J C E P , either xm x* <= h(X*) or xm x* n A(Z*) = 0 . Now let ,4 be any

power-separating language of order n. We will show that h (A) is a power-
separating language of order nm. Let x e X*, x Ï£ 1. If xm x* n A (Z*) = 0 ,
then x"m ;c*n/i (^) = 0 . Now suppose that xm x* ^ h (X*). Then there
exists }> G X* such that Zz (y) = xm. Let y = p\ x = q\ r, s ^ 1, /?, q e Q.
Then [Zz (/?)]r = A (>>) = xm = qsm. Since h (X) is pure, then by Proposition 12,
A (/?) is primitive and h (p) = q, r = sm.

If pnp* Ç f̂, then

pnms p* ç- A a n d h (pnms p*j = ^ (p)JnmS ̂  ( p )J* = ^ms q* = y,« ̂ * £ fc ^ ^

This implies that xnm x* ^ /z (^), because x* ^ ^*.

If pn p* n 4̂ = 0 , then pn p* ^ 4̂ = X* — A and ^ is also a power-
separating language of order n. By using the same argument as above, it can
be shown that xnm x* ç /* (^). Since /z is injective, then h(A) n h (À) = 0 ,
and therefore xnm x* n h(A) = 0.

It follows then that h (A) is a power-separating language of order nm. #
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