Free access
Issue
RAIRO-Theor. Inf. Appl.
Volume 33, Number 1, January Fabruary 1999
Page(s) 47 - 57
DOI http://dx.doi.org/10.1051/ita:1999105
Published online 15 August 2002
  1. J. Almeida, Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994).
  2. J. Almeida, The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. [CrossRef] [MathSciNet]
  3. J. Almeida, Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989).
  4. J. Almeida, Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. [CrossRef]
  5. J. Almeida, On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. [CrossRef] [MathSciNet]
  6. J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, J.B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere).
  7. J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28.
  8. C.J. Ash, T.E. Hall and J.-E. Pin, On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. [CrossRef] [MathSciNet]
  9. D. Beauquier and J.-E. Pin, Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. [CrossRef]
  10. J.A. Brzozowski and I. Simon, Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. [CrossRef] [MathSciNet]
  11. S. Eilenberg, Automata, languages and machines. Academic Press, New York, Vol. B (1976).
  12. S. Eilenberg and M.P. Schützenberger, On pseudovarieties. Adv. in Math. 19 (1976) 413-418. [CrossRef]
  13. R. McNaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. [CrossRef] [MathSciNet]
  14. J.-E. Pin, Variétés de Langages Formels, Masson, Paris (1984).
  15. J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272.
  16. J. Reiterman, The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. [CrossRef] [MathSciNet]
  17. M.P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. [CrossRef]
  18. C. Selmi, Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).
  19. C. Selmi, Over Testable Languages. Theoret. Comput. Sci. 162 (1996) 157-190. [CrossRef]
  20. I. Simon, Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222.
  21. P. Weil, Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991).
  22. Y. Zalcstein, Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. [CrossRef] [MathSciNet]
  23. Y. Zalcstein Y., Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. [CrossRef]
  24. M. Zeitoun, Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).